欢迎来到天天文库
浏览记录
ID:39297313
大小:517.50 KB
页数:10页
时间:2019-06-29
《高中数学第二章推理与证明2.1.2演绎推理学案含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.1.2 演绎推理演绎推理看下面两个问题:(1)一切奇数都不能被2整除,(22017+1)是奇数,所以(22017+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a是其中一个平面内的一条直线,那么a平行于另一个平面.问题1:这两个问题中的第一句都说的什么?提示:都说的一般原理.问题2:第二句又都说的什么?提示:都说的特殊示例.问题3:第三句呢?提示:由一般原理对特殊示例做出判断.1.演绎推理的概念从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.2
2、.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.“三段论”可以表示为:大前提:M是P.小前提:S是M.结论:S是P.演绎推理的三个特点(1)演绎推理的前提是一般性原理,演绎推理所得的结论是蕴含于前提之中的个别、特殊事实,结论完全蕴含于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演
3、绎推理是由一般到特殊的推理.10把演绎推理写成三段论的形式 将下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为an=3n+2(n≥2)的数列{an}为等差数列. (1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论
4、)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{an}中,如果当n≥2时,an-an-1为常数,则{an}为等差数列.(大前提)通项公式an=3n+2,n≥2时,an-an-1=3n+2-=3(常数).(小前提)通项公式为an=3n+2(n≥2)的数列{an}为等差数列.(结论)三段论的推理形式三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c”.其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情
5、况;a⇒c为大前提和小前提联合产生的逻辑结果.把下列推断写成三段论的形式:(1)y=sinx(x∈R)是周期函数.(2)若两个角是对顶角,则这两个角相等,所以若∠1和∠2是对顶角,则∠1和∠2相等.解:(1)三角函数是周期函数,大前提y=sinx(x∈R)是三角函数,小前提y=sinx(x∈R)是周期函数.结论10(2)两个角是对顶角,则这两个角相等,大前提∠1和∠2是对顶角,小前提∠1和∠2相等.结论三段论在证明几何问题中的应用 用三段论证明并指出每一步推理的大、小前提.如右图,在锐角△ABC中,AD,BE
6、是高,D,E为垂足,M为AB的中点.求证:ME=MD. ∵有一个内角为直角的三角形为直角三角形,……大前提在△ABD中,AD⊥CB,∠ADB=90°,………………………………小前提∴△ABD为直角三角形.………………………………………………结论同理△ABE也为直角三角形.∵直角三角形斜边上的中线等于斜边的一半,………………大前提M是直角△ABD斜边AB上的中点,DM为中线,………………………………小前提∴DM=AB.……………………………………………………………………………结论同理EM=AB.∵和同一条线段相
7、等的两条线段相等,………………………………………………大前提DM=AB,EM=AB,……………………………………………………………小前提∴ME=MD.结论三段论在几何问题中的应用(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.如图,已知在梯形ABCD中,,AB=CD=AD,AC和BD是梯形
8、的对角线,求证:AC平分∠BCD,DB平分∠CBA.证明:∵等腰三角形两底角相等,………………………………………………大前提10△DAC是等腰三角形,∠1和∠2是两个底角,………………………………小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,………………………………大前提∠1和∠3是平行线AD、BC被AC截得的内错角,………………………………小前提∴∠1=∠3.结论∵等于同一个角
此文档下载收益归作者所有