A lower bound for sums of eigenvalues of the Laplacian (2)

A lower bound for sums of eigenvalues of the Laplacian (2)

ID:39153100

大小:280.33 KB

页数:6页

时间:2019-06-25

A lower bound for sums of eigenvalues of the Laplacian (2)_第1页
A lower bound for sums of eigenvalues of the Laplacian (2)_第2页
A lower bound for sums of eigenvalues of the Laplacian (2)_第3页
A lower bound for sums of eigenvalues of the Laplacian (2)_第4页
A lower bound for sums of eigenvalues of the Laplacian (2)_第5页
资源描述:

《A lower bound for sums of eigenvalues of the Laplacian (2)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PROCEEDINGSOFTHEAMERICANMATHEMATICALSOCIETYVolume131,Number2,Pages631{636S0002-9939(02)06834-XArticleelectronicallypublishedonSeptember25,2002ALOWERBOUNDFORSUMSOFEIGENVALUESOFTHELAPLACIANANTONIOSD.MELAS(CommunicatedbyBennettChow)Abstract.Letk()bethekthDirichleteige

2、nvalueofaboundeddomaininRn.AccordingtoWeyl'sasymptoticformulawehave()sC2=nkn(k=V()):TheoptimalinviewofthisasymptoticrelationlowerestimateforthesumsPk()hasbeenprovenbyP.LiandS.T.Yau(Comm.Math.Phys.88j=1j(1983),309-318).Herewewillimprovethisestimatebyaddingtoitsrigh

3、t-handsideatermoftheorderofkthatdependsontheratioofthevolumetothemomentofinertiaof.1.IntroductionLetRnbeaboundedopensetandlet0<()():::denotethe12eigenvalues(repeatedwithmultiplicity)oftheDirichletLaplacianon,thatis,oftheeigenvalueproblem(1.1)u+u=0in;u=0on@:Th

4、easymptoticbehaviorofk()ask!1relatestogeometricpropertiesoftheopenset.InfactWeyl'sasymptoticformulaassertsthatk2=n(1.2)k()Cn()ask!1V()whereV()isthevolumeofandC=(2)2!2=nnnwith!nbeingthevolumeoftheunitballinRn.Polyaprovedin[4]thattheaboveasymptoticrelationisinfa

5、ctaone-sidedinequalityifisaplanedomainthattilesR2(andhisproofalsoworksinRn)andheconjectured,foranydomaininRn,theinequalityk2=n(1.3)k()Cn()V()forallk1.InthisdirectionLieb[3]provedaninequalitylike(1.3)foranydomaininRnbutwithaconstantC~nthatdi ersfromtheconstantCnby

6、afactor.ReceivedbytheeditorsAugust28,2001.2000MathematicsSubjectClassi cation.Primary58G25;Secondary35P15,58G05.c2002AmericanMathematicalSociety631632ANTONIOSD.MELASThenP.LiandS.T.Yau[2]provedthatontheaverage(1.3)istrueforanydomaininRn,thatis,XknCnn+22(1.4)j()knV

7、()nn+2j=1whichissharpinviewofWeyl'sasymptoticformula.Thisalsogivesalowerboundforeachindividualeigenvalue,betterthanpreviouslyknownandtendingtobeoptimalasthedimensionn!1.ThisinequalitywascomplementedbyP.Kr•ogerin[1]whogaveanupperboundforthesumsoftheeigenvaluesdependi

8、ngongeometricpropertiesofthathavetodowiththebehaviorofthevolumeofthe"-neigbourhoodsoftheboundary@.Usingthisheobtainedclosetoopti-malestima

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。