6.2 解一元一次方程

6.2 解一元一次方程

ID:39106922

大小:142.50 KB

页数:5页

时间:2019-06-25

6.2 解一元一次方程_第1页
6.2 解一元一次方程_第2页
6.2 解一元一次方程_第3页
6.2 解一元一次方程_第4页
6.2 解一元一次方程_第5页
资源描述:

《6.2 解一元一次方程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2.解一元一次方程第1课时一元一次方程的解法(1)【知识与技能】1.一元一次方程的定义.2.了解如何去括号解方程.3.了解去分母解方程的方法.【过程与方法】通过对方程变形的分析,探索求解简单方程的规律.【情感态度】培养学生体会数学价值的目的.【教学重点】1.一元一次方程的定义;2.解一元一次方程的步骤.【教学难点】灵活使用变形解方程.一、情境导入,初步认识上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析)4+x=7;3x+5=7-2x;y-2/6=y/3+1;x+y=10;x+y+z=

2、6;x2-2x-3=0;x3-1=0.【教学说明】让学生观察这几个方程,使学生初步感知一元一次方程特别之处.二、思考探究,获取新知1.比较一下,第一行的方程(即前3个方程)与其余方程有什么区别?(学生答)可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答)【归纳结论】只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.【教学说明】谈到次数的方程都是指整式方程,即方程的两边都是整式.像2x=3这样就不是一

3、元一次方程.2.上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.解方程:①3(x-2)+1=x-(2x-1)分析:方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解:去括号3x-6+1=x-2x+1,合并同类项3x-5=-x+1,移项3x+x=1+5,合并同类项4x=6,系数化为1x=1.5.②解方程:(x-3)/2-(2x+1)/3=1分析:只要把分母去掉,就可将方程化为上节课的类型.12和13的分母为2和3,最小公倍数是6,方程两边都乘以6,则可去分母.解:去分母3(x-

4、3)-2(2x+1)=6,去括号3x-9-4x-2=6,合并同类项-x-11=6,移项-x=17,系数化为1x=-17.回顾上面的解题过程,总结一下:解一元一次方程通常有哪些步骤?【归纳结论】解一元一次方程通常的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.三、运用新知,深化理解1.下列式子是一元一次方程的有__________.(1)32x+22-12x(2)x=0.(3)1/x=1(4)x2+x-1=0(5)x-x=22.解下列方程3.y取何值时,2(3y+4)的值比5(2y-7)的值大3?4.当x为何值时,代数式(18+x)/3与x-1互为相反数?【教学说明】通过习题练习来

5、巩固提高.【答案】1.(2)2.(1)解:2x-4-12x+3=9-9x-10x-1=9-9x-10x+9x=1+9-x=10x=-10(2)解:-7(1-2x)=3×2(3x+1)-7+14x=18x+6-4x=13x=-13/4(3)分析:方程中有多重括号,那么先去小括号,再去中括号,最后去大括号.8x+20=2(4x+3)-(2-3x)8x+20=8x+6-2+3x8x-8x-3x=6-2-20-3x=-16x=16/3.(5)解:3(2-x)-18=2x-(2x+3),6-3x-18=-3-3x=9x=-3.(6)解:6x-3(x-1)=12-2(x+2)6x-3x+3=12-2x-

6、46x-3x+2x=12-4-35x=5x=1.3.分析:这样的题列成方程就是2(3y+4)-5(2y-7)=3,求y即可.解:2(3y+4)-5(2y-7)=3去括号6y+8-10y+35=3合并同类项-4y+43=3移项-4y=-40系数化为1y=10.答:当y=10时,2(3y+4)的值比5(2y-7)的值大3.4.分析:两个数如果互为相反数,则它们的和等于0,根据相反数的意义列出以x为未知数的方程,解方程即可求出x的值.为相反数.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第11页“练习”.2.完成练习册中本课时练习.

7、从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生模棱两可,自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然).备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。