欢迎来到天天文库
浏览记录
ID:38874827
大小:136.50 KB
页数:8页
时间:2019-06-20
《最大面积是多少?》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第二章二次函数7.最大面积是多少一、学生知识状况分析学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。学生的活动经验基础:通过第七节的学习,学生已经经历了由实际问题转化为数学问题的过程,对解决这类问题有了处理经验。二、教学任务分析本节课将进一步利用二次函数解决问题,是上一节内容的进一步升华和提高,具体的教学目标如下:(一)知识与技能能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二
2、次函数的知识解决实际问题中的最大(小)值.(二)过程与方法1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.(三)情感态度与价值观1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.教学重
3、点1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积的问题.三、教学过程分析本节课分为五个环节,分别是:创设问题情境引入新课、归纳升华、课堂练习活动探究、课时小结、课后作业第一环节创设问题情境,引入新课上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是
4、求二次函数的最大值,实际上就是利用二次函数来解决实际问题.解决这类问题的关键是要审清题意,明确要解决的是什么,分析问题中各个量之间的关系,建立数学模型。在此基础上,利用我们所学过的数学知识,逐步得到问题的解答过程.本节课我们将继续利用二次函数解决最大面积的问题.活动内容:由四个实际问题构成1.问题一:如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.(1)设长方形的一边AB=xm,那么AD边的长度如何表示?(2)设长方形的面积为ym2,当x取何值时,y的值最大?最大值是多少?问题一的设计目的:对于这个问题,教师将其
5、作为例题,不论是对问题本身的分析,还是具体的解法过程,都将作出细致、规范的讲解和示范。具体的过程如下:分析:(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得即.所以AD=BC=(40-x).(2)要求面积y的最大值,即求函数y=AB·AD=x·(40-x)的最大值,就转化为数学问题了.下面请小组开始讨论并写出解题步骤.(1)∵BC∥AD,∴△EBC∽△EAF.∴.又AB=x,BE=40-x,∴.∴BC=(40-x).∴AD=BC=(40-x)=30-x.(2)y=AB·AD=
6、x(30-x)=-x2+30x=-(x2-40x+400-400)=-(x2-40x+400)+300=-(x-20)2+300.当x=20时,y最大=300.即当x取20m时,y的值最大,最大值是300m2.2.问题二:将问题一变式:“设AD边的长为xm,则问题会怎样呢?”解:∵DC∥AB,∴△FDC∽△FAE.∴.∵AD=x,FD=30-x.∴.∴DC=(30-x).∴AB=DC=(30-x).y=AB·AD=x·(30-x)=-x2+40x=-(x2-30x+225-225)=-(x-15)2+300.当x=15时,y最大=300.即当AD的
7、长为15m时,长方形的面积最大,最大面积是300m2.活动目的:在活动解决之初(末),揭示该问题与问题一的关系3.问题三:对问题一再变式如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上,BC在斜边上.(1).设矩形的一边BC=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?活动目的:有了前面两题作基础,这个问题可以留给学生自己解决,作为练习4.问题四:某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时
8、,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?分析:x为半圆的半径,也是矩形的较长边,因此x与半圆
此文档下载收益归作者所有