欢迎来到天天文库
浏览记录
ID:38873667
大小:84.00 KB
页数:4页
时间:2019-06-20
《3.7-弧长及扇形的面积》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、教学目标: 知识目标:经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式、并会应用公式解决问题 能力目标:提高分析问题、解决问题的能力 德育目标:辩证地看待问题 教学重点和难点 重点:弧长计算公式及扇形面积计算公式 难点:弧长计算公式及扇形面积计算公式 教学过程设计 一、 从学生原有的认知结构提出问题在小学时,我们学习过圆的周长公式及面积的公式:、。这节课,我们在原有的基础上,学习弧长公式及扇形的面积公式。 二、师生共同研究形成概念1.弧长公式☆想一想书本P132输送带通过具体实际情境,探索弧长的计算公式。 在讲解圆
2、心角时,大家还记得我们是如何推导出圆心角的度数与所对的弧的度数相同的?我们把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。我们把每一份这样的弧叫做1°的弧。所以,圆心角的度数和它所对的弧的度数相等。 圆的弧长也是一样,把一个圆平均分成360份,那么圆弧的公式就是: 一定要在理解的基础上记忆只要知道圆弧的度数、半径、弧长的其中两个,那么我们就可以求得另一个未知的量。2.讲解例题 例1.制作弯形管道时,需要决定按中心线计算“展直长度”再下料。试计算图中所示的管道的展直长度,即的长。分析:例题主要是让学生应用公式进行计算,在计算时,要注意公式中的字母的
3、意义。3.扇形的面积公式 ☆想一想书本P133想一想通过具体实际情境,探索扇形面积的计算公式。扇形面积公式以圆面积公式为基础,在让学生思考此问题时,要注意两点:一是最大活动区域的数学含义。二是圆心角是360度的扇形面积等于圆面积,圆心角为n度的扇形面积等于圆面积的360分之n。 一定要在理解的基础上记忆 例2 .扇形AOB的半径为12cm,∠AOB=120°,求AB的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1)。分析:例题主要是让学生应用公式进行计算,在计算时,要注意公式中的字母的意义。 4.弧长公式与扇形面积公式之间的关系
4、 三、 随堂练习1.书本P134随堂练习1、22.《练习册》P603. 填表: 四、 小结弧长公式与扇形的面积公式。 五、作业书本P135习题3.101
此文档下载收益归作者所有