求解二元一次方程组(第1课时)

求解二元一次方程组(第1课时)

ID:38867765

大小:109.00 KB

页数:4页

时间:2019-06-20

求解二元一次方程组(第1课时)_第1页
求解二元一次方程组(第1课时)_第2页
求解二元一次方程组(第1课时)_第3页
求解二元一次方程组(第1课时)_第4页
资源描述:

《求解二元一次方程组(第1课时)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、课  题5.2求解二元一次方程组(第1课时)课时备课时间授课时间设计理念在求出方程组的解之后,可以对求出的解进行检验,这样可以防止和纠正方程变形和计算过程中可能出现的错误.二元一次方程组的解法,其本质思想是消元,体会“化未知为已知”的化归思想.教学目标知识与技能会用代入消元法解二元一次方程组;过程与方法了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.情感态度与价值观了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.教学重点用代入消元法解二元一次方程组.教学难点在解题过程中体会“消元”思想和“化未知为已知”的化归思想.教法学法探索、分析教学手段多媒体教学过程知识模块

2、教师活动指导学生活动设计设计意图一、导入新课第一环节:复习引入教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x个成人,y个儿童,我们得到了方程组成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验是不是方程和方程的解,从而得知这个解既是的解,也是“温故而知新”二、新课第二环节:探索新知提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?回顾七年级第一学期学习的一元一次方程,

3、是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)的解,根据二元一次方程组的解的定义,得出是方程组的解.所以成人和儿童分别去了5人和3人.解:设去了x个成人,则去了个儿童,根据题意,得:解得:将代入,解得:8-5=3.答:去了5个成人,3个儿童.列二元一次方程组设有两个未知数:

4、x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出个.因此y应该等于.而由二元一次方程组的一个方程,根据等式的性质可以推出.(1)解:将②代入①,得:,培养学生养成时时回顾已有知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.体会“化未知为已知”的化归思想的神奇,培养学生独立获取知识的愿望和能力.第三环节:巩固新知1.例:解下列方程组:(1)(2).解得:.把代入②,得:.所以原方程组的解为:(2)由②,得:.③将③代入①,得:.解得:.将y=2代入③,得:.所以原方程组的解是进一步熟悉解二元一

5、次方程组的基本思路,熟练解二元一次方程组的基本步骤和过程,并能对二元一次方程组的解进行检验.三、巩固练习第四环节:练习提高教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一.可能会出现整体代换的思想,若有条件可以提出,为下一课做点铺垫也可以)2.补充练习:用代入消元法解下列方程组:(1)(2)⑶对本节知识进行巩固练习四、小结第五环节:课堂小结师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”;解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代

6、数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.鼓励学生通过本节课的学习,谈谈自己的收获与感受,加深对“温故而知新”的体会,知道“学而时习之”.五、作业习题1、2、3、4六、课后反思1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.2.探究有序.回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有了很好

7、的认知基础,探究显得十分自然流畅.3.充分体现了转化与化归思想.引导学生充分思考和体验转化与化归思想,以利于总体目标中所提出的“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”的落实.4.值得注意的方面.在学生总结解题步骤的环节,一定要留给学生足够的观察、思考、总结、组织语言的时间,训练学生的观察归纳能力,提高学生学习能力

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。