欢迎来到天天文库
浏览记录
ID:38742918
大小:2.04 MB
页数:20页
时间:2019-06-18
《中考考前压轴模拟训练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考考前压轴模拟训练1、如图,已知抛物线L1:y=x2-4的图像与x有交于A、C两点,(1)若抛物线l2与l1关于x轴对称,求l2的解析式;(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;(3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。2、如图1,已知直线与抛物线交于两点.(1)求两点的坐标;(2)求线段的垂直平分线的解析式;(3)如图2,取与线段等长的一根橡皮
2、筋,端点分别固定在两处.用铅笔拉着这根橡皮筋使笔尖在直线上方的抛物线上移动,动点将与构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点的坐标;如果不存在,请简要说明理由.3、如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(OA3、14、已知:如图,抛物线的图象与轴分别交于两点,与轴交于点,经过原点及点,点是劣弧上一动点(点与不重合).(1)求抛物线的顶点的坐标;(2)求的面积;(3)连交于点,延长至,使,试探究当点运动到何处时,直线与相切,并请说明理由.205、如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标。DAC4、PCBCOC6、如图,点在轴上,交轴于两点,连结并延长交于,过点的直线交轴于,且的半径为,.(1)求点的坐标;(2)求证:是的切线;(3)若二次函数的图象经过点,求这个二次函数的解析式,并写出使二次函数值小于一次函数值的的取值范围.7、如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点.(1)求证:直线是的切线;(2)求点的坐标及直线的解析式;xyABCOFE(3)有一个半径与的半径相等,且圆心在轴上运动的.若与直线相交于两点,是否存在这样的点,使是直角三角形.若存在,求出点的坐标;若不存在,请说明理由.8、如图,直线与轴,轴分别相交于点,点,经过两点的抛物线5、与轴的另一交点为,顶点为,且对称轴是直线.(1)求点的坐标;(2)求该抛物线的函数表达式;(3)连结.请问在轴上是否存在点,使得以点为顶点的三角形与相似,若存在,请求出点的坐标;若不存在,请说明理由.9、已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式并且线段CM的长为(1)求抛物线的解析式。(2)设抛物线与x轴有两个交点A(X1,0)、B(X2,0),且点A在B的左侧,求线段AB的长。(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。2010、已知:抛物线与轴相交于两点,且.(Ⅰ)若,且为正整数,求抛物线的解析式;(Ⅱ)若,求的取值范围;(Ⅲ)试判断是否存6、在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;(Ⅳ)若直线过点,与(Ⅰ)中的抛物线相交于两点,且使,求直线的解析式.11、如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,7、在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.图1图212、如图①,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;AABBOOxxyy(第26题图)图①图②(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在
3、14、已知:如图,抛物线的图象与轴分别交于两点,与轴交于点,经过原点及点,点是劣弧上一动点(点与不重合).(1)求抛物线的顶点的坐标;(2)求的面积;(3)连交于点,延长至,使,试探究当点运动到何处时,直线与相切,并请说明理由.205、如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标。DAC
4、PCBCOC6、如图,点在轴上,交轴于两点,连结并延长交于,过点的直线交轴于,且的半径为,.(1)求点的坐标;(2)求证:是的切线;(3)若二次函数的图象经过点,求这个二次函数的解析式,并写出使二次函数值小于一次函数值的的取值范围.7、如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点.(1)求证:直线是的切线;(2)求点的坐标及直线的解析式;xyABCOFE(3)有一个半径与的半径相等,且圆心在轴上运动的.若与直线相交于两点,是否存在这样的点,使是直角三角形.若存在,求出点的坐标;若不存在,请说明理由.8、如图,直线与轴,轴分别相交于点,点,经过两点的抛物线
5、与轴的另一交点为,顶点为,且对称轴是直线.(1)求点的坐标;(2)求该抛物线的函数表达式;(3)连结.请问在轴上是否存在点,使得以点为顶点的三角形与相似,若存在,请求出点的坐标;若不存在,请说明理由.9、已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式并且线段CM的长为(1)求抛物线的解析式。(2)设抛物线与x轴有两个交点A(X1,0)、B(X2,0),且点A在B的左侧,求线段AB的长。(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。2010、已知:抛物线与轴相交于两点,且.(Ⅰ)若,且为正整数,求抛物线的解析式;(Ⅱ)若,求的取值范围;(Ⅲ)试判断是否存
6、在,使经过点和点的圆与轴相切于点,若存在,求出的值;若不存在,试说明理由;(Ⅳ)若直线过点,与(Ⅰ)中的抛物线相交于两点,且使,求直线的解析式.11、如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,
7、在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.图1图212、如图①,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;AABBOOxxyy(第26题图)图①图②(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在
此文档下载收益归作者所有