欢迎来到天天文库
浏览记录
ID:38736966
大小:452.50 KB
页数:12页
时间:2019-06-18
《圆周运动典型问题剖析 教师版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、匀速圆周运动典型问题剖析(一)运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。为了描述其运动的特殊性,又引入周期(T)、频率(f)、角速度()等物理量,涉及的物理量及公式较多。因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。1.基本概念、公式的理解和运用[例1]关于匀速圆周运动,下列说法正确的是()B、DA.线速度不变B.角速度不变C.加速度为零D.周期不变[例2]在绕竖直轴匀速转动的圆环上有A、B两点,如图1所示,过A、B的半径与
2、竖直轴的夹角分别为30°和60°,则A、B两点的线速度之比为;向心加速度之比为。图1加速度之比2.传动带传动问题[例3]如图2所示,a、b两轮靠皮带传动,A、B分别为两轮边缘上的点,C与A同在a轮上,已知,,在传动时,皮带不打滑。求:(1);(2);(3)。图2(1)(2)(3)(二)动力学特征及应用物体做匀速圆周运动时,由合力提供圆周运动的向心力且有方向始终指向圆心1.基本概念及规律的应用[例4]12如图3所示,质量相等的小球A、B分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O点匀速转动时求杆OA和AB段对球A的拉力之比
3、。图3[例5]如图4所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是(AB)A.球A的线速度必定大于球B的线速度B.球A的角速度必定小于球B的角速度C.球A的运动周期必定小于球B的运动周期D.球A对筒壁的压力必定大于球B对筒壁的压力图42.轨迹圆(圆心、半径)的确定[例6]甲、乙两名滑冰运动员,,,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图5所示,两人相距0.9m,弹簧秤的示数为9.2N,下列判断中正确的是(D)A.
4、两人的线速度相同,约为40m/sB.两人的角速度相同,为6rad/sC.两人的运动半径相同,都是0.45mD.两人的运动半径不同,甲为0.3m,乙为0.6m图53.联系实际问题[例7]司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。)解析:设汽车质量为m,车轮与地面的动摩擦因数为,刹车时车速为,此时车离墙距离为,为方便起见,设车是沿墙底线的中垂线运动。若司机采用刹车,车向前滑行的距离设为s,则12常数,若司采取急转弯法,则(R是最小转弯
5、半径),。讨论:(1)若,则急刹车或急转弯均可以;(2)若,则急刹车会平安无事,汽车能否急转弯与墙的长度和位置有关,如图6所示,质点P表示汽车,AB表示墙,若墙长度,如图6,,则墙在AB和CD之间任一位置上,汽车转弯同样平安无事;(3)若,则不能急刹车,但由(2)知若墙长和位置符合一定条件,汽车照样可以转弯。点评:利用基本知识解决实际问题的关键是看能否将实际问题转化为合理的物理模型。图6三.匀速圆周运动的实例变形课文中的圆周运动只有汽车过桥和火车转弯两个实例,而从这两个实例可以变化出很多模型。试分析如下:(一)汽车过桥原型:汽
6、车过拱形桥如图1所示,汽车受到重力G和支持力FN,合力提供汽车过桥所需的向心力。图1地球可以看成一个大的拱形桥模型一:绳拉小球在竖直平面内过最高点的运动。图2实例:翻转过山车如图3所示:由于过山车在轨道最高点所受的力为重力和轨道的支持力,故分析方法与模型一类似。请同学们自己分析一下。12图3模型二:一轻杆固定一小球在竖直平面内过最高点的运动。图4(二)火车转弯原型:火车转弯如图5所示,火车在平直的轨道上转弯,将挤压外轨,由外轨给火车的弹力提供火车转弯所需的向心力,这样久而久之,将损坏外轨。图5故火车转弯处使外轨略高于内轨,火车
7、驶过转弯处时,铁轨对火车的支持力FN的方向不再是竖直的,而是斜向弯道的内侧,它与重力的合力指向圆心,提供火车转弯所需的向心力(如图6所示)。这就减轻了轮缘与外轨的挤压。图6模型一:圆锥摆小球所需的向心力由重力和绳的拉力的合力来提供(如图7所示)12图7模型二:小球在漏斗中的转动小球所需的向心力由重力和漏斗的支持力的合力来提供(如图8所示)图8四.匀速圆周运动的多解问题匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其中一个做匀速圆周运动,另一个做其他形式的运动。由于这两种运动是同时进行的,因此,依据等时性建立等式来解待求
8、量是解答此类问题的基本思路。特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n”正是这一考虑的数学化。[例1]如
此文档下载收益归作者所有