欢迎来到天天文库
浏览记录
ID:29489468
大小:551.54 KB
页数:12页
时间:2018-12-20
《全册总复习(圆周运动典型问题剖析)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。(一)运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。为了描述其运动的特殊性,又引入周
2、期(T)、频率(f)、角速度()等物理量,涉及的物理量及公式较多。因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。1.基本概念、公式的理解和运用[例1]关于匀速圆周运动,下列说法正确的是()A.线速度不变B.角速度不变C.加速度为零D.周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D。[例2]在绕竖直轴匀速转动的圆环上有A、B两点,如图1所示,过A、B的半径与竖直轴的夹角分别为30°
3、和60°,则A、B两点的线速度之比为;向心加速度之比为。图1解析:A、B两点做圆周运动的半径分别为它们的角速度相同,所以线速度之比加速度之比2.传动带传动问题[例3]如图2所示,a、b两轮靠皮带传动,A、B分别为两轮边缘上的点,C与A同在a轮上,已知,,在传动时,皮带不打滑。求:(1);(2);(3)。图2解析:A、C两点在同一皮带轮上,它们的角速度相等,即,由于皮带不打滑,所以A、B两点的线速度大小相等,即。(1)根据知(2)根据知(3)根据知点评:共轴转动的物体上各点的角速度相同,不打滑的皮带传动
4、的两轮边缘上各点线速度大小相等,这样通过“角速度”或“线速度”将比较“遥远”的两个质点的运动学特点联系在一起。(二)动力学特征及应用物体做匀速圆周运动时,由合力提供圆周运动的向心力且有方向始终指向圆心1.基本概念及规律的应用[例4]如图3所示,质量相等的小球A、B分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O点匀速转动时求杆OA和AB段对球A的拉力之比。解析:隔离A、B球进行受力分析,如图3所示。因A、B两球角速度相同,设为,选用公式,并取指向圆心方向为正方向,则对A球:①对B球:②①②两式联立解
5、得图3点评:向心力是指做匀速圆周运动物体受到的合力,而不一定是某一个力,要对物体进行正确的受力分析。[例5]如图4所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是()A.球A的线速度必定大于球B的线速度B.球A的角速度必定小于球B的角速度C.球A的运动周期必定小于球B的运动周期D.球A对筒壁的压力必定大于球B对筒壁的压力图4解析:对小球A、B受力分析,两球的向心力都来源于重力mg和支持力的合力,
6、其合成如图4所示,故两球的向心力比较线速度时,选用分析得r大,v一定大,A答案正确。比较角速度时,选用分析得r大,一定小,B答案正确。比较周期时,选用分析得r大,T一定大,C答案不正确。小球A和B受到的支持力都等于,D答案不正确。点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;②根据问题讨论需要,解题时要合理选择向心力公式。2.轨迹圆(圆心、半径)的确定[例6]甲、乙两名滑冰运动员,,,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,如图5所示,两人相距0.9m,弹簧秤的示数为9.2N,下列判
7、断中正确的是()A.两人的线速度相同,约为40m/sB.两人的角速度相同,为6rad/sC.两人的运动半径相同,都是0.45mD.两人的运动半径不同,甲为0.3m,乙为0.6m图5解析:甲、乙两人做圆周运动的角速度相同,向心力大小都是弹簧的弹力,则有即且,,解得,由于所以而,r不同,v不同。所以答案选D。点评:有些匀速圆周运动的轨迹圆是比较“隐蔽”的,一旦理解错误,就会给解题带来麻烦,如本题中两人做匀速圆周运动的半径并不是两人的间距,例2中A、B做圆周运动的圆心并不是圆环的中心O等。3.联系实际问题[
8、例7]司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。)解析:设汽车质量为m,车轮与地面的动摩擦因数为,刹车时车速为,此时车离墙距离为,为方便起见,设车是沿墙底线的中垂线运动。若司机采用刹车,车向前滑行的距离设为s,则常数,若司采取急转弯法,则(R是最小转弯半径),。讨论:(1)若,则急刹车或急转弯均可以;(2)若,则急刹车会平安无事,汽车能否急转弯与墙的长度和位
此文档下载收益归作者所有