欢迎来到天天文库
浏览记录
ID:38458504
大小:40.18 KB
页数:4页
时间:2019-06-13
《人教版数学七年级下册 5.2.2 平行线及判定》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题5.2.2直线平行的判定教学目标1.理解并掌握两直线平行的条件──同位角相等,两直线平行;2.理解用三角板和直尺过直线外一点画已知直线的平行线的依据.1.理解并掌握两直线平行的条件──同位角相等,两直线平行;2.理解用三角板和直尺过直线外一点画已知直线的平行线的依据.教学重点会认各种图形下的同位角,并掌握直线平行的条件,是“同位角相等,两直线平行”.会认各种图形下的同位角,并掌握直线平行的条件,是“同位角相等,两直线平行”.教学难点识别各种图形下的同位角及平行线判定方法的灵活应用识别各种图形下的同位角及平行线判定方法的灵活应用课时安排1课时1课时收集的学生提问教学过程一、创设
2、问题情境,导入新课活动1如图(1)所示,用活动木条相交成∠1,∠2,固定木条b、c,转动木条a.问题:(1)如图(2),在木条a转动的过程中,观察∠2的变化以及它与∠1的大小关系,你发现木条a与木条b的位置关系发生了什么变化?(2)改变图(1)中∠1的大小,按照上面的方式,再做一做.∠1与∠2的大小满足什么关系时,木条a与木条b平行?活动2教师在此过程关注学生能否积极地从事活动,活动中是否进行了思考;能否归纳出“同位角相等,两直线平行”的几何事实;是否主动地改变木条的位置以考虑一般的结论;能否将自己的发现与同伴进行交流,并从中获益等.师生行为:师:同学们先独立操作、观察,找出结论
3、,然后四人讨论,得出结论.生:在转动木条a的过程中,看到∠1与∠2的大小关系为三种情况:大于、等于、小于;木条a与木条b的位置关系有两种情况;相交与平行;当∠1=∠2时,木条a与木条b平行.生:如果改变∠1的大小,按照上面的方法操作,我们也可以得到∠2与∠1只要相等,那么木条a与木条b平行.师:由此我们看到:木条a、b我们以前已学过用直尺和三角尺过直线外一点画已知直线的平行线.如图所示.问题:(3)(1)三角尺起着什么作用?(2)什么量保持不变?你能得到什么结论?二、探索、归纳两直线平行的条件活动3问题:(1)在图2和图3中,∠1,∠2具有怎样的位置关系?(2)如图,直线AB、C
4、D与直线L相交,构成几个角?(4)活动4问题:如图5,你能说出木工用图中,这种叫做角尺的工具画平行线的道理吗?(5)〖设计说明〗用“同位角相等,两直线平行”这一数学事实去解决生活中的问题,这正是学习数学的意义所在.师生行为:生:木工师傅正是用了角尺在沿着直线AB移动的过程中,角尺所形成的角的大小不变,如图5中,∠DCB=∠FEB,而∠DCB、∠FEB可看作直线CD、EF被直线AB所截得的同位角,由“同位角相等,两直线平行”可得CD∥EF.师:能用几何符号表示吗?生:可以,上述过程可表示为:因为∠DCB=∠FEB,所以CD∥EF(同位角相等,两直线平行).师:问题(2)该如何作答?
5、〖设计说明〗的位置与∠1、∠2的大小有密切关系.只要∠1=∠2,木条a就平行木条b.师生行为:师:同学们不妨再亲自动手过直线AB外一点P画已知直线AB的平行线CD,感受三角尺所起的作用.生:三角尺实际上保证了过P点所画的∠2和∠1相等,即在画平行线的过程中,∠1移动到∠2时大小没变.师生行为:师:图2和图3中的∠1和∠2构成了同位角.请同学们分析一下:∠1和∠2有怎样的位置关系?为什么叫同位角,可以分组讨论.生:在图2中,我们可以把木条a、b、c抽象成直线a、b、c,其中直线a、b被直线c所截,而∠1、∠2在被截直线a、b的同一侧,且在第三条直线c的上方,像这样位置相同的一对角叫
6、同位角.生:图3中,∠1,∠2在直线EF的同一侧,并且在AB、CD的下方,也有相同的位置关系,因此也是同位角.师:大家了解了同位角后,想一想,我们在活动1、活动2中得到的“如果∠1=∠2,则木条a平行于木条b”;“如果∠1=∠2,过P点所画的直线CD平行于直线AB”.一般情况下该怎样叙述?生:两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.师:得出此结论,对于我们判定两条直线平行有何意义?通过几个问题的解决,使学生加深对平行线定义以及对平行线性质的理解,培养学生解决问题的能力.活动5问题:(1)找出下图点阵中互相平行的直线;(6)(2)如图,∠1=∠2=55°,∠3等
7、于多少度?直线AB、CD平行吗?说明你的理由.(7)师生行为:生:在图6中,因为线段AB、CD与EF、GH相交所成的锐角是45°.因为∠1=∠2=45°,所以AB∥CD;因为∠2=∠3=45°,所以EF∥GH.生:在图7中,∠3是∠2的对顶角,所以∠3=55°(对顶角相等).因为∠1=∠2=55°,∠3=55°,所以∠1=∠3,又因为∠1,∠3构成同位角.由同位角相等,两直线平行,得AB∥CD.四、课堂小结活动6问题:你对本节内容有何认识?三种判定两直线平行的方法:(1)定义(不
此文档下载收益归作者所有