理论力学03空间力系的简化和平衡

理论力学03空间力系的简化和平衡

ID:38331364

大小:2.40 MB

页数:70页

时间:2019-06-10

理论力学03空间力系的简化和平衡_第1页
理论力学03空间力系的简化和平衡_第2页
理论力学03空间力系的简化和平衡_第3页
理论力学03空间力系的简化和平衡_第4页
理论力学03空间力系的简化和平衡_第5页
资源描述:

《理论力学03空间力系的简化和平衡》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1第三章空间力系的简化和平衡2静力学工程中常常存在着很多各力的作用线不在同一平面内的力系,即空间力系,空间力系是最一般的力系。(a)图为空间汇交力系;(b)图为空间任意力系;(b)图中去了风力为空间平行力系。迎面风力侧面风力b3第五章空间力系§5–1空间汇交力系§5–2空间力偶系§5–3力对点的矩与力对轴的矩§5–4空间一般力系向一点的简化§5–5空间一般力系简化结果的讨论§5–6空间一般力系的平衡方程及应用§5–7平行力系的中心与物体的重心习题课4静力学一、空间力的投影(与力的分解):1.力在空间的表示:力的三要素:大小、方向、作用点(线)大小:作用点:在物

2、体的哪点就是哪点方向:由、、g三个方向角确定由仰角与俯角来确定。bgqFxyO§3-1空间汇交力系5静力学2、一次投影法(直接投影法)由图可知:3、二次投影法(间接投影法)当力与各轴正向夹角不易确定时,可先将F投影到xy面上,然后再投影到x、y轴上,即6静力学4、力沿坐标轴分解:若以表示力沿直角坐标轴的正交分量,则:而:所以:FxFyFz7静力学1、几何法:与平面汇交力系的合成方法相同,也可用力多边形方法求合力。即:合力等于各分力的矢量和2、解析法:由于代入上式合力由为合力在x轴的投影,∴二、空间汇交力系的合成与平衡:8静力学3、合力投影定理:空间力系

3、的合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。9静力学称为平衡方程空间汇交力系的平衡方程∴解析法平衡充要条件为:∴几何法平衡充要条件为该力系的力多边形封闭。空间汇交力系平衡的充要条件是:力系的合力为零,即:10静力学在平面中:力对点的矩是代数量。在空间中:力对点的矩是矢量。[例]汽车反镜的球铰链§3-2空间力矩理论一、力对点的矩的矢量表示如果r表示A点的矢径,则:11静力学即:力对点的矩等于矩心到该力作用点的矢径与该力的矢量积。两矢量夹角为O力矩矢在直角坐标中的三个投影12静力学定义:它是代数量,方向规定+–二、力对轴的矩结论:力对//它的轴的矩为

4、零。即力F与轴共面时,力对轴之矩为零。[证]力对空间点之矩在该轴上的投影13静力学力对轴之矩的计算方法:1、先将力向该轴的正交平面分解,再计算该分力对轴的平面力矩。2、力矩关系定理定理:力对轴之矩等于该力对轴上任意一点之矩在该轴上的投影。这就是力对点之矩与对通过该点轴之矩的关系。即:需要证明设转轴为Z轴,其上任一点为原点O,到力作用线上任一点之距离为下式表达r14静力学比较即得:前述有:一般推导时各量均应设为正值15静力学力对任意轴之矩的求法:先求出力对该轴上任意一点之矩,再在该轴的方向做投影---与该轴矢量做点积。等于这力对于该轴的矩。两平面的法矢分别为:轴

5、线方程:轴方向矢:对任意轴的矩16静力学17静力学§3-3空间力偶理论由于空间力偶除大小、转向外,还必须确定力偶的作用面,所以空间力偶矩必须用矢量表示。一、力偶矩用矢量表示:力偶的转向为右手螺旋定则。从力偶矢末端看去,逆时针转动为正。空间力偶是一个自由矢量。18[证]①作平面II//Ⅰ,线段cd//ab②各作一对平衡力作用在c、d点并使其与F1平行和相等③由ad、bc点平行力合成得-R=R'④在I内的力偶(F1,F1‘)等效变成II内的(F2,F2')静力学力偶等效定理作用在同一刚体的两平行平面的两个力偶,若它们的转向相同,力偶矩的大小相等,则两个力偶等效。1

6、9静力学空间力偶系的合成与平衡由于空间力偶系是自由矢量,只要方向不变,可移至任意一点,故可使其滑至汇交于某点,由于是矢量,它的合成符合矢量运算法则。合力偶矩=分力偶矩的矢量和显然空间力偶系的平衡条件是:20静力学把研究平面一般力系的简化方法拿来研究空间一般力系的简化问题,但须把平面坐标系扩充为空间坐标系。§3-4空间任意力系的简化和平衡设作用在刚体上有空间一般力系向O点简化(O点任选)一、空间任意力系向指定点简化21静力学①根据力线平移定理,将各力平行搬到O点得到一空间汇交力系:和附加力偶系[注意]分别是各力对O点的矩。②由于空间力偶是自由矢量,总可汇交于O点

7、。22静力学③合成得主矢即(主矢过简化中心O,且与O点的选择无关)合成得主矩即:(主矩与简化中心O有关)23静力学若取简化中心O点为坐标原点,则:主矢大小主矢方向根据力对点之矩与力对轴之矩的关系:则主矩大小为:主矩方向:24静力学二、空间任意力系的平衡条件:所以空间任意力系的平衡方程为:还有四矩式,五矩式和六矩式,同时各有一定限制条件。25静力学空间汇交力系的平衡方程为:因为各力线都汇交于一点,各轴都通过该点,故各力矩方程都成为了恒等式。空间平行力系的平衡方程,设各力线都//z轴。因为均成为了恒等式。26静力学空间一般力系向一点简化得一主矢和主矩,下面针对主矢

8、、主矩的不同情况分别加以讨论。三空间一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。