欢迎来到天天文库
浏览记录
ID:38310830
大小:960.00 KB
页数:11页
时间:2019-06-09
《高三数学函数的单调性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、(选修Ⅰ)第二章导数2.4函数的单调性与极值1.函数的单调性oyxyox1oyx1在(-∞,0)和(0,+∞)上分别是减函数。但在定义域上不是减函数。在(-∞,1)上是减函数,在(1,+∞)上是增函数。在(-∞,+∞)上是增函数画出下列函数的图像,并根据图像指出每个函数的单调区间复习:单调性的概念对于给定区间上的函数f(x):1.如果对于这个区间上的任意两个自变量x1,x2,当x1f
2、(x2),那么就说f(x)在这个区间上是减函数(或单调递减函数)对于函数y=f(x)在某个区间上单调递增或单调递减的性质,叫做f(x)在这个区间上的单调性,这个区间叫做f(x)的单调区间。ox1y1.在x=1的左边函数图像的单调性如何?定理:一般地,函数y=f(x)在某个区间内可导:如果恒有,则是增函数。如果恒有,则是减函数。如果恒有,则是常数。新课引入2.在x=1的左边函数图像上的各点切线的倾斜角为(锐角/钝角)?他的斜率有什么特征?3.由导数的几何意义,你可以得到什么结论?4.在x=1的右边时,同时回答上述问题。例1.确定函数在哪个区间是减函数?在哪
3、个区间上是增函数?2xyo解:(1)求函数的定义域函数f(x)的定义域是(-∞,+∞)(2)求函数的导数(3)令以及求自变量x的取值范围,也即函数的单调区间。令2x-4>0,解得x>2∴x∈(2,+∞)时,是增函数令2x-4<0,解得x<2∴x∈(-∞,2)时,是减函数例2确定函数,在哪个区间是增函数,那个区间是减函数。xyo解:函数f(x)的定义域是(-∞,+∞)令6x2-12x>0,解得x>2或x<0∴当x∈(2,+∞)时,f(x)是增函数;当x∈(-∞,0)时,f(x)也是增函数令6x2-12x<0,解得,04、减函数。解:例3求函数的单调区间。知识点:定理:一般地,函数y=f(x)在某个区间内可导:如果恒有,则f(x)在是增函数。如果恒有,则f(x)是减函数。如果恒有,则f(x)是常数。步骤:(1)求函数的定义域(2)求函数的导数(3)令f’(x)>0以及f’(x)<0,求自变量x的取值范围,即函数的单调区间。f’(x)>0f’(x)<0f’(x)=0本讲到此结束,请同学们课后再做好复习.谢谢!再见!作业(选修Ⅰ)习题2.41,2
4、减函数。解:例3求函数的单调区间。知识点:定理:一般地,函数y=f(x)在某个区间内可导:如果恒有,则f(x)在是增函数。如果恒有,则f(x)是减函数。如果恒有,则f(x)是常数。步骤:(1)求函数的定义域(2)求函数的导数(3)令f’(x)>0以及f’(x)<0,求自变量x的取值范围,即函数的单调区间。f’(x)>0f’(x)<0f’(x)=0本讲到此结束,请同学们课后再做好复习.谢谢!再见!作业(选修Ⅰ)习题2.41,2
此文档下载收益归作者所有