基于网格的密度树算法

基于网格的密度树算法

ID:38139218

大小:355.69 KB

页数:6页

时间:2019-05-31

基于网格的密度树算法_第1页
基于网格的密度树算法_第2页
基于网格的密度树算法_第3页
基于网格的密度树算法_第4页
基于网格的密度树算法_第5页
资源描述:

《基于网格的密度树算法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ProceedingsoftheFourthInternationalConferenceonMachineLearningandCybernetics,Guangzhou,18-21August2005ACLUSTERINGALGORITHMBASEDONBUILDINGADENSITY-TREE1112WEI-DIDAI,YUE-XIANHOU,PI-LIANHE,XIAO-SHENZHENG1DepartmentofComputerScienceandTechnology,TianjinUniversity,Tianjin300072,Chin

2、a2CollegeofMarineScienceandEngineering,TianjinUniversityofScienceandTechnology,Tianjin300457,ChinaE-MAIL:davidy@126.com,yxhou@tju.edu.cn,plhe@tju.edu.cn,zhengxiaoshen@163.comAbstract:formalldatapoints.ComparingwithotherclusteringAnewkindofclusteringalgorithmcalledCABDETisalgori

3、thms,DENCLUEgeneralizespartition-basedmethodspresentedinthispaper.CABDETcreatesatreestructureforandhierarchicalmethods,andhasgoodclusteringeverycluster,fromwhichtheneighbor’sradiusofthecurrentpropertiesfordatasetswithlargeamountsofnoise.objectiscalculatedbythelocaldensityofitsf

4、athernode.However,themethodissensitivetotheinputparameterandThoseunprocessedobjectsintheneighborofthecurrentnoisethreshold.Theselectionofsuchparametersmayobjectareaddedtoextendthetreestructureuntilnonewsignificantlyinfluencethequalityoftheclusteringresults.objectisfounded.Eachd

5、ensity-treeisregardedasonecluster.CABDETrequiresonlyoneinputparameterastheinitialDBSCANcanquicklydiscoverdifferentclustersofradiusoftherootnodeandhasnolimitationofdensityarbitraryshapeaccordingtotheconnectivityofdensity.Athreshold.Othercharacteristicsincludetheabilitiesofcluste

6、risgeneratedorcombinedtoanotherexitingclusterifdiscoveringclusterswitharbitraryshapeandprocessingthethisclusterhasnotlessthanonecoreobjectandmanynoisedata.Theresultofourexperimentsdemonstratesthatdensity-reachableobjects.AnewclusterisfoundbasedonCABDETissignificantlymoreaccurat

7、eindiscoveringsuchfacts:oneclustercanbedeterminedbyanycoreobject.density-changeableclusteringthanthealgorithmDBSCAN,DBSCANrequirestwoinputparameters:radiusoftheandthatCABDETislesssensitivetoinputparameters.ε-neighborhoodandtheminimumnumberofobjects.Actually,high-dimensionalreal

8、datasetsoftenhaveveryKeywords:skeweddistributionssucht

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。