变量与函数教案.

变量与函数教案.

ID:38013881

大小:42.00 KB

页数:6页

时间:2019-05-05

变量与函数教案._第1页
变量与函数教案._第2页
变量与函数教案._第3页
变量与函数教案._第4页
变量与函数教案._第5页
资源描述:

《变量与函数教案.》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、变量与函数板桥中学刘朝贵一、教学目标1.运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.能分清实例中的常量与变量,了解自变量与函数的意义。2.通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题的能力。3.引导学生探索实际问题的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。二教学重点1.理解变量的内涵。2.函数概念的形成过程。三教学难点1.理解变量的内涵。2.正确理解函数的概念。四教学过

2、程6  (一)问题引入,联系实际问题1:汽车以60千米/小时的速度行驶,行驶里程为s千米,行驶时间为t小时。先填写下面的表,再试着用含t的式子表示s.t/小时12345s/千米     问题2:已知每张电影票的售价为10元,如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售x张票,票房收入为y元,怎样用含x的式子表示y?   问题3.要画一个面积为10㎝的圆,圆的半径应取多少?画面积为20㎝的圆呢?怎样用含圆面积s的式子表示圆半径r?             

3、                                                             让学生思考后充分发表意见,然后教师进行点评。(二)动手实验,加深体验问题1:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:悬挂重物的质量/㎏12345弹簧长度/㎝     6如果弹簧原长10㎝,每1㎏重物使弹簧伸长0.5㎝,怎样用重物质量m(㎏)的式子表示受力后的弹簧长度L(㎝)?问题2:用10m长的绳子未围成长方形。是改变长方形的长度,观察长方形的面积怎

4、样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律(用表格表示)。设长方形的长为x米,面积为S㎡,怎样用含x的式子表示S?分组进行实验活动,然后各组选派代表进行汇报。(三)探究新知问题1:(承接上面几例)说出变量与常量的概念。在学生动手实验并充分发表自己意见的基础上,师生共同归纳:在一个变化过程中,数值发生变化的量是变量;数值不发生变化的量是常量。例如:上面问题中的速度60(单位:千米/时)、票价10(单位:元)等,都是常量。问题2:请具体指出上面这些问题和实验中,哪些量是变量,哪些量

5、是常量。请再举出一些实例,指出其中的变量与常量。分组活动。先独立思考,然后小组内交流并作记录,最后各组选派代表汇报。问题3:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?6师生共同总结分析得出:上面的每个问题中的两个变量互相联系。当其中一个变量取定一个值时,另一个变量就有唯一确定的值。问题4:分组讨论本节“观察”中的两个问题。一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数。如果当x=a时y=

6、b,那么b叫做当自变量的值为a时的函数值。例如在前面的问题中,时间t是自变量,里程s是t的函。t=1时,其函数值s为60,t=2时,其函数值s为120。同样地,在心电图中,时间x是自变量,心脏电流y是x的函数;人口统计表中,年份x是自变量,人口数y是x的函数。当x=1999时,函数值y=12.52亿。(四)巩固新知,分层练习问题1:如图所示:梯形上底的长是x,下底的长是15,高是8.①梯形面积y与上底的长x之间的关系式是什么? 并指出其中的变量和常量、自变量与函数。②用表格表示当x从10变到20时(每次增加1),

7、 y的相应值。③当x每增加1时,y如何变化?说说你的理由。6④当x=0时,y等于多少?此时它表示的是什么?问题2:根据下列题意写出适当的关系式,并指出其中的变量和常量。(1)多边形的内角和W与边数n的关系;(2)甲、乙两地相距y千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t(小时)表示自行车;离乙地的距离s(千米)。解:根据题意列表解答如下:题号关系式变量常量(1)W=(n-2)×180W、n2、180(2)s=y-10ts、ty、10(五)课堂小结提问:通过这节课的学习,请同学们说出自己的收

8、获、成功的地方、困难的地方、疑问等。常量与变量的概念;函数的定义;函数的三种表示方式。(六)布置作业1、购买一些铅笔,单价为0.5元/枝,总价y元随铅笔枝数x变化,指出其中的常量与变量,自变量与函数,并写出函数解析式。2、一个三角形的底边长为8,高h可以任意伸缩,写出面积S随h变化的解析式,并指出其中的常量与变量,自变量与函数,以及自变量的取值范围。五教学后记61、常量与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。