A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks

A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks

ID:37656788

大小:368.83 KB

页数:35页

时间:2019-05-27

A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks_第1页
A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks_第2页
A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks_第3页
A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks_第4页
A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks_第5页
资源描述:

《A Central Limit Theorem for Convolution Equations and Weakly Self-Avoiding Walks》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ACENTRALLIMITTHEOREMFORCONVOLUTIONEQUATIONSANDWEAKLYSELF-AVOIDINGWALKSERWINBOLTHAUSENANDCHRISTINERITZMANNAbstract.Themainresultofthispaperisageneralcentrallimittheoremfordistributionsdefinedbycertainrenewaltypeequations.Weapplythistoweaklyself-avoidingrandomwalks.Wegivegooderrores

2、timatesandGaussiantailestimateswhichhavenotbeenobtainedbyothermethods.Weusethe‘laceexpansion’andatthesametimedevelopanewperspectiveonthismethod:WeworkwithafixedpointargumentdirectlyinZdwithoutusingLaplaceorFouriertransformation.Contents1.IntroductionandResults12.DeterminingtheMass

3、Constants63.LocalEstimatesinHighDimensions104.ApplicationtotheWeaklySelf-AvoidingWalk23AppendixA.ALCLTandDiscretizationEstimates25AppendixB.TheLaceExpansion30References351.IntroductionandResults1.1.Introduction.ThestandardsimplerandomwalkonthehypercubiclatticeZdisgivenbytheunifor

4、mdistributiononthesetofnearest-neighbourpathsstart-ingin0,andoflengthn.Thelawoftheself-avoidingrandomwalkissimplytheuniformdistributiononthesetofwalkshavingnoself-intersections.Aninterpo-lationbetweenthestrictlyself-avoidingwalkandthestandardrandomwalkistheso-calledweaklyself-avo

5、idingwalk(alsoknownas‘Domb-Joycemodel’).Here,self-arXiv:math/0103218v2[math.PR]11Jan2002intersectionsarenotcompletelyforbidden,butpenalizedbyafactor1−λforeveryself-intersection,whereλ∈(0,1)isaparameter.Notmuchisknownrigorouslyfortheseself-avoidingrandomwalksindimensionsd=2,3and4.

6、AquantityofbasicinterestisthesocalledconnectivityC(x),x∈Zd,n∈N,nwhichisobtainedbysummingtheweightsofallpathsfrom0toxoflengthn:Intherandomwalkcase,thepathsallgetweight1,inthestrictlyself-avoidingcase,onlythepathswithoutself-intersectionsgetweight1,theothers0,andintheweaklyself-avo

7、idingcase,theweightisgivenintermsofthenumberofself-intersections(andtheparameterλ)asindicatedabove.Afternormalization,thisdefinesthedistributionoftheend-pointofthewalk.Thefirstresultsinthecased≥5wereobtainedbyBrydgesandSpencer[2]inthemiddleoftheeighties.Theyintroducedaperturbativee

8、xpansiontechnique,basedonthesocalledlace

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。