欢迎来到天天文库
浏览记录
ID:37472034
大小:1.10 MB
页数:24页
时间:2019-05-12
《《阶线性微分方程》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四节一阶线性微分方程一、线性微分方程二、伯努利方程三、小结一阶线性微分方程的标准形式:上方程称为齐次的.上方程称为非齐次的.一、线性方程例如线性的;非线性的.齐次方程的通解为1.线性齐次方程一阶线性微分方程的解法(使用分离变量法)2.线性非齐次方程讨论两边积分非齐次方程通解形式与齐次方程通解相比:常数变易法把齐次方程通解中的常数变易为待定函数的方法.实质:未知函数的变量代换.作变换积分得一阶线性非齐次微分方程的通解为:对应齐次方程通解非齐次方程特解解例1解法二:原方程所对应的齐次微分方程为:分离变量得故其通解为代入所给的非齐次方程,得两边积分得故所求非齐次微分方程的通解为例
2、2如图所示,平行于轴的动直线被曲线与截下的线段PQ之长数值上等于阴影部分的面积,求曲线.两边求导得解解此微分方程所求曲线为伯努利(Bernoulli)方程的标准形式方程为线性微分方程.方程为非线性微分方程.二、伯努利方程解法:需经过变量代换化为线性微分方程.求出通解后,将代入即得代入上式解例3例4用适当的变量代换解微分方程:解所求通解为解代入原式分离变量法得所求通解为另解三、小结1.齐次方程2.线性非齐次方程3.伯努利方程思考题求微分方程的通解.思考题解答练习题练习题答案
此文档下载收益归作者所有