资源描述:
《14不等式小结与复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:第二章不等式小结与复习一、知识目标:理解不等式的性质及其证明.掌握一元一次不等式组、一元二次不等式、简单的分式不等式和含绝对值不等式的解法二、能力目标:1.掌握两个正数的算术平均数不小于它们的几何平均数的定理(不扩展到三个正数的算术平均数不小于它们的几何平均数定理),并会简单的证明.2.掌握分析法、综合法、比较法等几种常用方法证明简单的不等式.3.在复习一元一次不等式、一元一次不等式组、一元二次不等式、简单的分式不等式和含绝对值不等式等的解法的基础上,掌握其他简单不等式的解法.三、情感目标:通过不等式的一些应
2、用,理解在现实世界中的量之间,不等是普遍的、绝对的,相等则是局部的、相对的,从而形成辩证唯物主义观点.四、小结与复习过程:1.比较两实数大小的方法——求差比较法:比较两个实数与的大小,归结为判断它们的差的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.2.三个重要的结论(实数大小的性质):;;.例1:已知,比较与的大小.分析:此题属于两个代数式比较大小,但是其中的有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略.解:,由得,从而.3.同向不等式
3、,异向不等式概念:同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式.例2:是异向不等式,是同向不等式.4.不等式的性质:定理1:若,则;若,则.即.说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性.在证明时,既要证明充分性,也要证明必要性.定理2:若,且,则.说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性.定理3:若,则.说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;(2)定理3的证明相当于比
4、较与的大小,采用的是求差比较法;(3)定理3的逆命题也成立(可让学生自证);(4)不等式中任何一项改变符号后,可以把它从一边移到另一边.理由是:根据定理3可得出:若,则即定理3推论:若.说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.定理4.如果且,那么;如果且,那么.推论1:如果且,那么.说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)
5、两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2:如果,那么.定理5:如果,那么.例3:若,比较与大小.解(法一):(1)若异号,则,∴∴.(2)若同号,则,,∴,∴.(法二):∵,又,即,(1)若异号,则,∴,∴;(2)若同号,则,∴,∴.5.基本不等式:定理:如果,那么(当且仅当时取“”).说明:(1)指出定理适用范围:;(2)强调取
6、“”的条件.定理:如果是正数,那么(当且仅当时取“=”)说明:(1)这个定理适用的范围:;(2)我们称的算术平均数,称的几何平均数.即:两个正数的算术平均数不小于它们的几何平均数.例4:已知都是正数,求证:①如果积是定值,那么当时,和有最小值;②如果和是定值,那么当时,积有最大值.证明:∵,∴,①当(定值)时,∴,∵上式当时取“”,∴当时有;②当(定值)时,∴,∵上式当时取“”∴当时有.说明:①最值的含义(“”取最小值,“”取最大值);②用极值定理求最值的必须具备的三个条件:一“正”、二“定”、三“相等”.例5:(
7、1)若,则为何值时有最小值,最小值为多少?(2)若,则为何值时有最大值,最大值为多少?解:(1)∵,∴,∴,当且仅当即时.(2)∵,∴-x>0,-,∴,当且仅当即时.∴x<0时,.例6:某工厂要建造一个长方体无盖贮水池,其容积为,深为,如果池底每的造价为元,池壁每的造价为元,问怎样设计水池能使总造价最低,最低总造价是多少?解:设水池底面一边的长度为,水池的总造价为元,根据题意,得:当.因此,当水池的底面是边长为的正方形时,水池的总造价最低,最低总造价是元.6.不等式证明(1)比较法:比较法证明不等式的一般步骤:作差
8、—变形—判断—结论.例7:求证:.证:∵,∴.例8:已知都是正数,并且,求证:证:∵都是正数,∴,又∵,∴,∴,即:.(2)综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法.说明:利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件.例9:已知为两两不相等的实数,