欢迎来到天天文库
浏览记录
ID:37192001
大小:149.65 KB
页数:3页
时间:2019-05-19
《直线位置关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、济源一中2016级数学组集体备课教案第课时课题空间中直线与直线之间的位置关系上课时间主备人崔红卫杨转运周其英课型新授课时间月日教学目标1.会判断两条直线的位置关系,学会用图形语言、符号语言表示三种位置关系.2.理解公理四,并能运用公理四证明线线平行.3掌握空间两直线的位置关系,掌握异面直线的概念,会用反证法和异面直线的判定定理证明两直线异面;4.掌握异面直线所成角的概念及异面直线垂直的概念,能求出一些较特殊的异面直线所成的角教学重点公理4及等角定理的运用异面直线所成的角.教学难点公理4及等角定理的运用异面直线所成
2、的角.教学过程设计集体研讨一、复习引入1、同一平面内两条直线有几种位置关系?2、在同一平面内,同平行于一条直线的两条直线有什么位置关系?提出问题:空间中的两条直线呢?二、自学探究自学课本内容三、指导点拨1.异面直线:我们把不同在任何一个平面内两条直线叫做异面直线(skewlines)。{引导学生得出空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。想一想:怎样通过图形来表示异面直线?为了表示异面直线a,b不
3、共面的特点,作图时,通常用一个或两个平面衬托。如下图:2.公理4:平行于同一条直线的两条直线互相平行。强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3.定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。-3-集思广益,通力合作夯实基础,再创辉煌济源一中2016级数学组集体备课教案第课时定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.4.异面直线所成的角已知两条异面直线a,b,经过空间任一点O作
4、直线a'∥a,b'∥b,我们把a'与b'所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角)。5.异面直线的判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线符号表示:与是异面直线6.两条直线互相垂直:如果两条异面直线所成的角是直角,那么就说这两条直线互相垂直,两条互相垂直的异面直线a,b,记作一、典例精析例1、如图,已知正方体ABCD-A'B'C'D'中。(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA'和CC'的夹角是多少?(3)哪些棱所在的直线与直线AA'垂直?
5、例2、(平行定理与等角定理的应用)如图,在正方体中,M,分别是棱AD和的中点.(1)求证:四边形为平行四边形;(2)求证:∠BMC=∠.例2图例3图例3(求异面直线所成的角)如图,在正方体中,E,F分别是的中点,求异面直线DB1与EF所成角的大小.二、当堂检测课本练习2.判断:(1)平行于同一直线的两条直线平行.()(2)与已知直线平行且距离等于定长的直线只有两条.()(3)若一个角的两边分别与另一个角的两边平行,那么这两个角相等()(4)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)
6、相等.()-3-集思广益,通力合作夯实基础,再创辉煌济源一中2016级数学组集体备课教案第课时课堂小结课后作业教学反思-3-集思广益,通力合作夯实基础,再创辉煌
此文档下载收益归作者所有