欢迎来到天天文库
浏览记录
ID:37070232
大小:4.62 MB
页数:78页
时间:2019-05-16
《基于稀疏正则化的SAR成像质量提升技术》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、分类号TN957学号14040106UDC密级公开工学硕士学位论文基于稀疏正则化的SAR成像质量提升技术硕士生姓名朱小祥学科专业信息与通信工程研究方向空间信息获取与处理技术指导教师何峰副研究员金光虎讲师国防科学技术大学研究生院二〇一六年十月ResearchofImprovingTheSARImagingQualityBasedonSparseRegularizationCandidate:XiaoxiangZhuSupervisor:FengHeAdissertationSubmittedinpartialfulfillmentoftherequirementsforthede
2、greeofMasterofEngineeringinInformationandCommunicationEngineeringGraduateSchoolofNationalUniversityofDefenseTechnologyChangsha,Hunan,P.R.China(November,2016)国防科学技术大学研究生院硕士学位论文目录摘要.................................................................................................................
3、..............iABSTRACT.....................................................................................................................ii第一章绪论....................................................................................................................11.1课题背景.....................
4、........................................................................................11.2研究意义.............................................................................................................21.3研究现状...............................................................................
5、..............................41.3.1国外研究现状........................................................................................51.3.2国内研究现状........................................................................................61.3.3应用稀疏技术存在的问题.............................................
6、.......................71.4本文的主要工作.................................................................................................8第二章稀疏表示基本理论............................................................................................92.1稀疏表示理论...............................................
7、......................................................92.2正则化方法理论...............................................................................................112.3经典稀疏重构算法...........................................................................
此文档下载收益归作者所有