社会化问答社区用户生成答案知识聚合及服务研究

社会化问答社区用户生成答案知识聚合及服务研究

ID:37066210

大小:4.01 MB

页数:256页

时间:2019-05-17

社会化问答社区用户生成答案知识聚合及服务研究_第1页
社会化问答社区用户生成答案知识聚合及服务研究_第2页
社会化问答社区用户生成答案知识聚合及服务研究_第3页
社会化问答社区用户生成答案知识聚合及服务研究_第4页
社会化问答社区用户生成答案知识聚合及服务研究_第5页
资源描述:

《社会化问答社区用户生成答案知识聚合及服务研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、摘要社会化问答社区用户生成答案知识聚合及服务研究随着大数据和移动互联网时代到来,传统基于关键词检索的搜索引擎搜寻和获取知识的方式已不能很好地满足人们需求。互联网快速发展带来的信息膨胀化、碎片化、冗余化等问题加速了用户对于垂直化、精准化信息的追求,用户越来越倾向于付出较少的时间和精力成本获取更加专业、权威的信息与知识,迫切需要一种新型的搜寻和获取知识方式。正是在这种大环境背景下社会化问答社区应运而生。社会化问答社区将社交和问答结合起来,引入社交网络来生产、传播和共享知识,满足用户精准化、垂直化以及个性化知识需求,帮助用户高效获取和利用

2、知识,促进知识的流动和交互,迅速发展成为网络用户获取知识的重要渠道。然而,随着社会化问答社区知识资源呈现急剧式增长,出现了“知识过载,用户知识迷航”的现象。用户在搜寻、筛选和利用知识等方面付出了大量的时间和精力成本,使得现有的社会化问答社区知识服务内容和方式难以有效满足用户知识需求。同时也出现了答案质量参差不齐、大量有用知识无人问津,难以被发现和使用等问题。因此,如何实现用户生成答案有效的管理组织和挖掘,优化和创新知识服务模式,为用户提供更好的知识服务成为社会化问答社区发展面临重要问题。鉴于此,本文将知识聚合理论和方法引入到社会化问

3、答社区知识服务,从面向用户知识需求视角出发,分析了社会化问答社区知识流动和用户知识需求,提出了基于知识聚合的社会化问答社区知识服务体系,探讨了用户生成答案质量评价问题,分别从知识单元、知识单元关联关系、句子3个关联维度设计用户生成答案知识聚合方法及相应的知识服务模式,最终提出促进社会化问答社区用户生成答案知识聚合及服务能力的策略。本文主要工作及结论如下:第一,探究了社会化问答社区的知识流动和用户知识需求。首先,分析了社会化问答社区知识流动特征、方式和过程。然后,分析了社会化问答社区用户知识需求的形成原因、层级和特征,借鉴科亨和泰勒的

4、需求层次理论分为客观状态知识需求、意识层次知识需求、表达出来的知识需求、折衷知识需求、个性化知识需求5个层级,认为其具有多样和综合化、随机性和情景化、集成性和精准化、动态连续性等特点。最后,分析了用户知识需求动态演化的原因和方向,运用集合论思想分析了互动交流和浏览推荐2种情境下用户动态演化过程。I第二,构建了基于知识聚合的社会化问答社区知识服务体系框架。首先,分析当前社会化问答社区现状及发展趋势,概述了用户生成答案知识聚合的目标和原则,将知识聚合理论引入到社会化问答社区知识服务。然后,分析了基于知识聚合的社会化问答社区知识服务要素、

5、动力和过程,以及相应的知识服务模式。最后,构建了基于知识聚合的社会化问答社区知识服务体系框架,分为资源层、处理层、聚合层、服务层和服务接口层5层结构,其中知识聚合层是最为关键层,并分析了各个层的功能和作用。第三,提出了社会化问答社区用户生成答案质量评价方法。首先,通过文献综述和实证分析方法构建了包含答案文本特征、回答者特征、时效性、用户特征、社会情感5个维度16个指标的答案质量评价指标体系。然后,将用户生成答案质量评价问题认为是典型的机器学习分类问题,提出了基于GA-BP神经网络的评价方法。最后,采集知乎网站数据验证了方法的有效性和

6、可行性。第四,基于标签聚类的社会化问答社区用户生成答案知识聚合及导航服务研究。为协助用户高效的从答案中查找和获取知识,提高知识搜寻和获取的效率,为用户提供知识导航和知识发现服务。首先,采用短语匹配模式提取答案中的关键短语,运用TextRank算法抽取排名靠前的答案文本中关键短语生成标签。然后,认为答案标签能够代表答案的关键知识内容和思想,运用DPCA算法进行答案标签聚类分析,实现用户生成答案知识聚合。最后,构建了基于答案标签聚类的社会化问答社区知识导航服务模式,采集携程网问答数据进行应用研究。第五,基于改进关联规则的社会化问答社区用

7、户生成答案知识聚合及推荐服务研究。为解决社会化问答社区用户生成答案知识过载,挖掘内含知识单元之间的关联,实现用户生成答案的关联知识聚合,为用户提供个性化的知识推荐服务。通过优化和改进了Apriori算法,设计了基于改进Apriori算法的用户生成答案关联知识聚合方法。构建了基于答案关联知识聚合的社会化问答社区知识推荐服务模式,采集知乎网站数据进行应用研究,验证了答案关联知识聚合及服务的有效性和可行性。第六,基于答案摘要生成的社会化问答社区用户生成答案知识聚合及融合服务。为了满足移动互联网环境下用户对于社会化问答社区答案知识总结需求,

8、减少答案查阅和搜寻成本,提高答案知识获取的效率和用户体验。首先,提出了融合word2vec和多特征的句子相似度计算方法,实现短文本句子相似度计算。然II后,针对概念类问题提出了基于改进TextRank和MMR算法的答案摘要生成方法;针

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。