欢迎来到天天文库
浏览记录
ID:36881919
大小:1.14 MB
页数:25页
时间:2019-05-11
《2015优化方案(高考总复习)新课标湖北理科专题讲座四》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题讲座四 探索性问题探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备,要求考生自己去探索,结合已知条件,进行观察、分析、比较和概括.它对考生的数学思想、数学意识及综合运用数学方法解决问题的能力提出了较高的要求.这类问题不仅考查考生的探索能力,而且给考生提供了创新思维的空间,所以备受高考的青睐,是高考重点考查的内容.探索性问题一般可以分为:条件探索性问题、规律探索性问题、结论探索性问题、存在探索性问题等.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增
2、删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到Sn要注意利用Sn与an的关系将其转化为an,再研究其具体性质.遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题易忘掉对n的奇偶性的讨论而致误.此类问题
3、的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.结论探索性问题对于结论探索性问题,需要先得出一个结论,再进行证明.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值,遇到数列中的比较大小问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法.此类问题的基本
4、特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.存在探索性问题解决此类问题的一般方法是:假设题中的数学对象存在或结论成立或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.这类问题的基本特征是:未给出问题的结论,需要由特殊情况入手,猜想、证明一般结论.解决这类问题的基本策略是:通常需要研究简化形式,但保持本质的特殊情形,从条件出发,通过观察、试验、归纳、类比、猜想来
5、探路,解题过程中创新成分比较高.在数列问题研究中,经常是根据数列的前几项所提供的信息作大胆的猜想,然后再给出证明.规律探索性问题本部分内容讲解结束按ESC键退出全屏播放
此文档下载收益归作者所有