2.3确定二次函数的表达式

ID:36174177

大小:1.29 MB

页数:28页

时间:2019-05-06

2.3确定二次函数的表达式_第1页
2.3确定二次函数的表达式_第2页
2.3确定二次函数的表达式_第3页
2.3确定二次函数的表达式_第4页
2.3确定二次函数的表达式_第5页
资源描述:

《2.3确定二次函数的表达式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3求二次函数解析式用待定系数法求二次函数的解析式一、一般式:y=ax²+bx+c(a,b,c为常数,a≠0)求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a,b,c的值。由已知条件(如二次函数图像上三个点的坐标)列出关于a,b,c的方程组,并求出a,b,c,就可以写出二次函数的解析式。例1已知:抛物线y=ax2+bx+c过点(2,1)、(1,-2)(0,5)三点,求抛物线的解析式解:由题意可得:{22a+2b+c=1①a+b+c=-2c=5解之得:{a=5b=-12c=5所以抛物线的解析式是:y=5x2-12x+5.例2已知一个二次函数的图象过点

2、(-1,10)、(1,4)、(2,7)三点,求这个函数的表达式?oxy解:设所求的二次函数为 y=ax2+bx+c由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:a=2,b=-3,c=5所以所求二次函数是:y=2x2-3x+5二、顶点式y=a(x-h)2+k(a、h、k为常数a≠0).1.若已知抛物线的顶点坐标和抛物线上的另一个点的坐标时,通过设函数的解析式为顶点式y=a(x-h)2+k.2.特别地,当抛物线的顶点为原点是,h=0,k=0,可设函数的解析式为y=ax2.3.当抛物线的对称轴为y轴时,h=0,可设函数的解析式为y=ax2+k.4.当

3、抛物线的顶点在x轴上时,k=0,可设函数的解析式为y=a(x-h)2.解:1.已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求该抛物线的解析式?yox所以设所求的二次函数解析式为:y=a(x+1)2-3因为已知抛物线的顶点为(-1,-3)又点(0,-5)在抛物线上a-3=-5,解得a=-2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-52.已知一个二次函数的图象经过点(4,-3),并且当x=3时有最大值4,试确定这个二次函数的解析式。解法1:(利用一般式)设二次函数解析式为:y=ax2+bx+c(a≠0)由题意知16a+4b+c

4、=-3-b/2a=3(4ac-b2)/4a=4解方程组得:a=-7b=42c=-59∴二次函数的解析式为:y=-7x2+42x-59解法2:(利用顶点式)∵ 当x=3时,有最大值4∴顶点坐标为(3,4)设二次函数解析式为:y=a(x-3)2+4∵函数图象过点(4,-3)∴a(4-3)2+4=-3∴ a=-7∴二次函数的解析式为:y=-7(x-3)2+43.二次函数y=ax2+bx+c的图象过点A(0,5),B(5,0)两点,它的对称轴为直线x=3,求这个二次函数的解析式。解:∵二次函数的对称轴为直线x=3∴设二次函数表达式为y=a(x-3)2+k图象过点A(0,5)

5、,B(5,0)两点∴5=a(0-3)2+k0=a(5-3)2+k解得:a=1k=-4∴二次函数的表达式:y=(x-3)2-4即y=x2-6x+5小结:已知顶点坐标(h,k)或对称轴方程x=h时优先选用顶点式。三、交点式y=a(x-x1)(x-x2).(a、x1、x2为常数a≠0)当抛物线与x轴有两个交点为(x1,0),(x2,0)时,二次函数y=ax2+bx+c可以转化为交点式y=a(x-x1)(x-x2).因此当抛物线与x轴有两个交点为(x1,0),(x2,0)时,可设函数的解析式为y=a(x-x1)(x-x2),在把另一个点的坐标代入其中,即可解得a,求出抛物线

6、的解析式。交点式y=a(x-x1)(x-x2).x1和x2分别是抛物线与x轴的两个交点的横坐标,这两个交点关于抛物线的对称轴对称,则直线就是抛物线的对称轴.1:已知二次函数与x轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。解:设所求的解析式为∵抛物线与x轴的交点坐标为(-1,0)、(1,0)∴又∵点(0,1)在图像上,∴a=-1即:∴∴∴解:(交点式)∵二次函数图象经过点(3,0),(-1,0)∴设二次函数表达式为:y=a(x-3)(x+1)∵函数图象过点(1,4)∴4=a(1-3)(1+1)得a=-1∴函数的表达式为:y=-(x+1)(

7、x-3)=-x2+2x+32:已知二次函数图象经过点(1,4),(-1,0)和(3,0)三点,求二次函数的表达式。知道抛物线与x轴的两个交点的坐标,选用交点式比较简便其它解法:(一般式)设二次函数解析式为y=ax2+bx+c∵二次函数图象过点(1,4),(-1,0)和(3,0)∴ a+b+c=4      ①a-b+c=0      ②9a+3b+c=0    ③解得:a=-1b=2c=3∴函数的解析式为:y=-x2+2x+3(顶点式)解:∵ 抛物线与x轴相交两点(-1,0)和(3,0),∴(-1+3)/2=1∴点(1,4)为抛物线的顶点可设二次函数解析式为:y

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《2.3确定二次函数的表达式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3求二次函数解析式用待定系数法求二次函数的解析式一、一般式:y=ax²+bx+c(a,b,c为常数,a≠0)求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a,b,c的值。由已知条件(如二次函数图像上三个点的坐标)列出关于a,b,c的方程组,并求出a,b,c,就可以写出二次函数的解析式。例1已知:抛物线y=ax2+bx+c过点(2,1)、(1,-2)(0,5)三点,求抛物线的解析式解:由题意可得:{22a+2b+c=1①a+b+c=-2c=5解之得:{a=5b=-12c=5所以抛物线的解析式是:y=5x2-12x+5.例2已知一个二次函数的图象过点

2、(-1,10)、(1,4)、(2,7)三点,求这个函数的表达式?oxy解:设所求的二次函数为 y=ax2+bx+c由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:a=2,b=-3,c=5所以所求二次函数是:y=2x2-3x+5二、顶点式y=a(x-h)2+k(a、h、k为常数a≠0).1.若已知抛物线的顶点坐标和抛物线上的另一个点的坐标时,通过设函数的解析式为顶点式y=a(x-h)2+k.2.特别地,当抛物线的顶点为原点是,h=0,k=0,可设函数的解析式为y=ax2.3.当抛物线的对称轴为y轴时,h=0,可设函数的解析式为y=ax2+k.4.当

3、抛物线的顶点在x轴上时,k=0,可设函数的解析式为y=a(x-h)2.解:1.已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求该抛物线的解析式?yox所以设所求的二次函数解析式为:y=a(x+1)2-3因为已知抛物线的顶点为(-1,-3)又点(0,-5)在抛物线上a-3=-5,解得a=-2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-52.已知一个二次函数的图象经过点(4,-3),并且当x=3时有最大值4,试确定这个二次函数的解析式。解法1:(利用一般式)设二次函数解析式为:y=ax2+bx+c(a≠0)由题意知16a+4b+c

4、=-3-b/2a=3(4ac-b2)/4a=4解方程组得:a=-7b=42c=-59∴二次函数的解析式为:y=-7x2+42x-59解法2:(利用顶点式)∵ 当x=3时,有最大值4∴顶点坐标为(3,4)设二次函数解析式为:y=a(x-3)2+4∵函数图象过点(4,-3)∴a(4-3)2+4=-3∴ a=-7∴二次函数的解析式为:y=-7(x-3)2+43.二次函数y=ax2+bx+c的图象过点A(0,5),B(5,0)两点,它的对称轴为直线x=3,求这个二次函数的解析式。解:∵二次函数的对称轴为直线x=3∴设二次函数表达式为y=a(x-3)2+k图象过点A(0,5)

5、,B(5,0)两点∴5=a(0-3)2+k0=a(5-3)2+k解得:a=1k=-4∴二次函数的表达式:y=(x-3)2-4即y=x2-6x+5小结:已知顶点坐标(h,k)或对称轴方程x=h时优先选用顶点式。三、交点式y=a(x-x1)(x-x2).(a、x1、x2为常数a≠0)当抛物线与x轴有两个交点为(x1,0),(x2,0)时,二次函数y=ax2+bx+c可以转化为交点式y=a(x-x1)(x-x2).因此当抛物线与x轴有两个交点为(x1,0),(x2,0)时,可设函数的解析式为y=a(x-x1)(x-x2),在把另一个点的坐标代入其中,即可解得a,求出抛物线

6、的解析式。交点式y=a(x-x1)(x-x2).x1和x2分别是抛物线与x轴的两个交点的横坐标,这两个交点关于抛物线的对称轴对称,则直线就是抛物线的对称轴.1:已知二次函数与x轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。解:设所求的解析式为∵抛物线与x轴的交点坐标为(-1,0)、(1,0)∴又∵点(0,1)在图像上,∴a=-1即:∴∴∴解:(交点式)∵二次函数图象经过点(3,0),(-1,0)∴设二次函数表达式为:y=a(x-3)(x+1)∵函数图象过点(1,4)∴4=a(1-3)(1+1)得a=-1∴函数的表达式为:y=-(x+1)(

7、x-3)=-x2+2x+32:已知二次函数图象经过点(1,4),(-1,0)和(3,0)三点,求二次函数的表达式。知道抛物线与x轴的两个交点的坐标,选用交点式比较简便其它解法:(一般式)设二次函数解析式为y=ax2+bx+c∵二次函数图象过点(1,4),(-1,0)和(3,0)∴ a+b+c=4      ①a-b+c=0      ②9a+3b+c=0    ③解得:a=-1b=2c=3∴函数的解析式为:y=-x2+2x+3(顶点式)解:∵ 抛物线与x轴相交两点(-1,0)和(3,0),∴(-1+3)/2=1∴点(1,4)为抛物线的顶点可设二次函数解析式为:y

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭