131圆周角定理

131圆周角定理

ID:36150085

大小:3.46 MB

页数:34页

时间:2019-05-06

131圆周角定理_第1页
131圆周角定理_第2页
131圆周角定理_第3页
131圆周角定理_第4页
131圆周角定理_第5页
资源描述:

《131圆周角定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、24.1.4圆周角高级中学初三(一)班圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦、那么它们所对应的其余各组量都分别相等两条弦的弦心距中有一组量相等,复习旧知:请说说我们是如何给圆心角下定义的,试回答?顶点在圆心的角叫圆心角。能仿照圆心角的定义,给下图中象∠ACB这样的角下个定义吗?顶点在圆上,并且两边都和圆相交的角叫做圆周角.问题探讨:判断下列图形中所画的∠P是否为圆周角?并说明理由。PPPP不是是不是不是顶点不在圆上。顶点在圆上,两边和圆相交。两边不和圆相交。有一边和圆不相交

2、。有没有圆周角?有没有圆心角?它们有什么共同的特点?它们都对着同一条弧⌒⌒⌒画一个圆,再任意画一个圆周角,看一下圆心在什么位置?圆心在一边上圆心在角内圆心在角外如图,观察圆周角∠ABC与圆心角∠AOC,它们的大小有什么关系?●OABC●OABC●OABC圆周角和圆心角的关系1.首先考虑第一种情况:当圆心O在圆周角(∠ABC)的一边(BC)上时,圆周角∠ABC与圆心角∠AOC的大小关系.∵∠AOC是△ABO的外角,∴∠AOC=∠B+∠A.∵OA=OB,●OABC∴∠A=∠B.∴∠AOC=2∠B.即∠ABC=∠AOC

3、.你能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.期望:你可要理解并掌握这个模型.第二种情况:如果圆心不在圆周角的一边上,结果会怎样?2.当圆心O在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?提示:能否转化为1的情况?过点B作直径BD.由1可得:●O∴∠ABC=∠AOC.能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.ABCD∠ABD=∠AOD,∠CBD=∠COD,●OABC第三种情况:如果圆心不在圆周角的一边上,结果会怎样?3.当圆心O在圆周角(∠A

4、BC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?提示:能否也转化为1的情况?过点B作直径BD.由1可得:●O∴∠ABC=∠AOC.你能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.D∠ABD=∠AOD,∠CBD=∠COD,ABC●OABC结论:圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。结论:圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。当球员在B,D,E处射门时,他所处的位置对球门AC分别形成

5、三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?.BACDE生活实践E●OBDCA规律:都相等,都等于圆心角∠AOC的一半AC所对的圆周角∠AEC∠ABC∠ADC的大小有什么关系?⌒结论:同弧或等弧所对的圆周角相等。在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.问题1:如图,AB是⊙O的直径,请问:∠C1、∠C2、∠C3的度数是。ABOC1C2C3推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。问题

6、2:若∠C1、∠C2、∠C3是直角,那么∠AOB是。90°180°探究与思考:·ABC1OC2C3归纳:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.定理1:同弧所对的圆周角相等。在同圆或等圆中,相等的圆周角所对的弧相等2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论巩固练习:如图,点A,B,C,D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?ABCD12345678练习:2.如图,圆心角∠AOB=100°,则∠ACB=__

7、_。OABCBAO.70°x1.求圆中角X的度数AO.X120°AO.X120°CCDB练一练1、如图,在⊙O中,∠ABC=50°,则∠AOC等于()A、50°;B、80°;C、90°;D、100°ACBOD2、如图,△ABC是等边三角形,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC等于()A、30°;B、60°;C、90°;D、45°CABPB练一练3、如图,∠A=50°,∠ABC=60°BD是⊙O的直径,则∠AEB等于()A、70°;B、110°;C、90°;D、120°B4、如图,△ABC的顶点A

8、、B、C都在⊙O上,∠C=30°,AB=2,则⊙O的半径是。ACBODECABO解:连接OA、OB∵∠C=30°,∴∠AOB=60°又∵OA=OB,∴△AOB是等边三角形∴OA=OB=AB=2,即半径为2。23:已知⊙O中弦AB的等于半径,求弦AB所对的圆心角和圆周角的度数。OAB圆心角为60度圆周角为30度或150度。在⊙O中,∠CBD=30°,∠BDC=20°,求∠A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。