欢迎来到天天文库
浏览记录
ID:36026820
大小:36.50 KB
页数:3页
时间:2019-04-29
《2.2.2《反证法》同步练习3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.2《反证法》同步练习3一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多
2、有两个大于60°4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( )A.a3、直线D.不可能是相交直线7.设a,b,c∈(-∞,0),则三数a+,c+,b+中( )A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-28.若P是两条异面直线l、m外的任意一点,则( )A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖4、了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( )A.甲 B.乙 C.丙 D.丁10.已知x1>0,x1≠1且xn+1=(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为( )A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xn≥xn+1且xn≤xn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0二、填空题11.命题5、“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确6、顺序的序号排列为____________.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.三、解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.16.已知a,b,c∈(0,1).求证:(1-a7、)b,(1-b)c,(1-c)a不能同时大于.17.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.18.(2010·湖北理,20改编)已知数列{bn}的通项公式为bn=n-1.求证:数列{bn}中的任意三项不可能成等差数列.
3、直线D.不可能是相交直线7.设a,b,c∈(-∞,0),则三数a+,c+,b+中( )A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-28.若P是两条异面直线l、m外的任意一点,则( )A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖
4、了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( )A.甲 B.乙 C.丙 D.丁10.已知x1>0,x1≠1且xn+1=(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为( )A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xn≥xn+1且xn≤xn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0二、填空题11.命题
5、“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确
6、顺序的序号排列为____________.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.三、解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.16.已知a,b,c∈(0,1).求证:(1-a
7、)b,(1-b)c,(1-c)a不能同时大于.17.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.18.(2010·湖北理,20改编)已知数列{bn}的通项公式为bn=n-1.求证:数列{bn}中的任意三项不可能成等差数列.
此文档下载收益归作者所有