资源描述:
《2019高考数学复习第九章平面解析几何9.2圆的方程练习理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§9.2 圆的方程考纲解读考点内容解读要求高考示例常考题型预测热度圆的方程①掌握确定圆的几何要素;②掌握圆的标准方程与一般方程掌握2017课标全国Ⅲ,20;2017江苏,13;2016江苏,18;2015课标Ⅰ,14;2014陕西,12填空题解答题★☆☆分析解读 1.了解参数方程的概念,理解圆的参数方程.2.能根据所给条件选取适当的方程形式,利用待定系数法求出圆的方程,结合圆的几何性质解决与圆有关的问题.3.高考对本节内容的考查以圆的方程为主,分值约为5分,中等难度,备考时应掌握“几何法”和“代数法”,求圆的方程的方法及与圆有关的最值问题.五年高考考点 圆的方程
2、 1.(2017江苏,13,5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若·≤20,则点P的横坐标的取值范围是 . 答案 [-5,1]2.(2015课标Ⅰ,14,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为 . 答案 +y2=3.(2014陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 . 答案 x2+(y-1)2=14.(2017课标全国Ⅲ,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,
3、B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解析 (1)设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4
4、(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为+=.5.(2016江苏,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行
5、于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.解析 圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以06、2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].三年模拟A
7、组 2016—2018年模拟·基础题组考点 圆的方程1.(2018湖南益阳模拟,4)点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是( ) A.-11D.a=±1答案 A2.(2018浙江宁波调研,6)已知圆C的圆心坐标为(2,-1),半径长是方程(x+1)(x-4)=0的解,则圆C的标准方程为( )A.(x+