资源描述:
《2018_2019学年高中数学课时分层作业2充分条件和必要条件苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业(二) 充分条件和必要条件(建议用时:45分钟)[基础达标练]一、填空题1.“α=+2kπ(k∈Z)”是“cos2α=”的________条件.【解析】 “α=+2kπ(k∈Z)”⇒“cos2α=”,“cos2α=”“α=+2kπ”(k∈Z).因为α还可以等于2kπ-(k∈Z),∴“α=+2kπ(k∈Z)”是“cos2α=”的充分不必要条件.【答案】 充分不必要2.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的________条件.【解析】 当a>0且b>0时,a+b>0
2、且ab>0;当ab>0时,a,b同号,又a+b>0,∴a>0且b>0.故“a>0且b>0”是“a+b>0且ab>0”的充分必要条件.【答案】 充分必要3.设x∈R,则“2-x≥0”是“
3、x-1
4、≤1”的__________条件.【导学号:95902018】【解析】 由2-x≥0得x≤2,由
5、x-1
6、≤1得0≤x≤2,∵x≤2⇒0≤x≤2,0≤x≤2⇒x≤2,故“2-x”是“
7、x-1
8、≤1”的必要不充分条件.【答案】 必要不充分4.对任意的a,b,c∈R,给出下列命题:①“a=b”是“ac=bc”的充要
9、条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充要条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是________.【解析】 当c=0时,ac=bc⇒a=b,故①是假命题,③a2>b2⇒
10、a
11、>
12、b
13、,故③是假命题,命题②、④是真命题.【答案】 25.已知函数y=ln(x-4)的定义域为A,集合B={x
14、x>a},若x∈A是x∈B的充分不必要条件,则实数a的取值范围__________.【导学号:95902019】【解析】 A={x
15、x>4}.∵x∈A
16、是x∈B的充分不必要条件,∴AB.∴a<4,即实数a的取值范围是{a
17、a<4}.【答案】 {a
18、a<4}6.给定空间中直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的________条件.【解析】 “直线l与平面α内两条相交直线都垂直”⇔“直线l与平面α垂直”.【答案】 充要7.不等式ax2+ax+a+3>0对一切实数x恒成立的充要条件是________.【导学号:95902020】【解析】 ①当a=0时,原不等式为3>0,恒成立;②当a≠0时,用数形结合的方法则有⇒
19、a>0.∴由①②得a≥0.【答案】 a≥08.α,β是两个不重合的平面,在下列条件中:①α,β都平行于直线l,m;②α内有三个不共线的点到β的距离相等;③l,m是α内的两条直线且l∥β,m∥β;④l,m是两条异面直线且l∥α,m∥α,l∥β,m∥β.“α∥β”的充分条件是________.【解析】 ①、③中l与m可能平行,②中三点位于两平面交线的两侧时,如图.AB∥l,α∩β=l,A与C到l的距离相等时,A,B,C到β的距离相等.【答案】 ④二、解答题9.指出下列各题中,p是q的什么条件(在“充分不必要
20、条件”,“必要不充分条件”,“充要条件”,“既不充分又不必要条件”中选出一种作答).(1)对于函数y=f(x),x∈R,p:y=
21、f(x)
22、的图象关于y轴对称;q:y=f(x)是奇函数.(2)p:x+y≠3;q:x≠1或y≠2.【导学号:95902021】【解】 (1)若函数y=f(x)是奇函数,则f(-x)=-f(x),此时
23、f(-x)
24、=
25、-f(x)
26、=
27、f(x)
28、,因此y=
29、f(x)
30、是偶函数,其图象关于y轴对称,但当y=
31、f(x)
32、的图象关于y轴对称时,未必推出y=f(x)为奇函数,故y=
33、f(
34、x)
35、的图象关于y轴对称是y=f(x)是奇函数的必要不充分条件.(2)原命题等价其逆否形式,即判断“x=1且y=2是x+y=3的必要不充分条件”,故x+y≠3是x≠1或y≠2的充分不必要条件.10.已知p:-2≤x≤10;q:x2-2x+1≤m2(m>0),若﹁p是﹁q的必要不充分条件,求实数m的取值范围.【解】 由q可得(x-1)2≤m2(m>0),所以1-m≤x≤1+m.即﹁p:x>10或x<-2,﹁q:x>1+m或x<1-m.因为﹁p是﹁q的必要不充分条件,所以﹁q⇒﹁p.故只需要满足,∴m≥9.
36、所以实数m的取值范围为[9,+∞).[能力提升练]1.下列命题:①两直线平行的充要条件是两直线的斜率相等;②△ABC中,·<0是△ABC为钝角三角形的充要条件;③2b=a+c是数列a,b,c为等差数列的充要条件;④△ABC中,tanAtanB>1是△ABC为锐角三角形的充要条件.其中的真命题有________.【导学号:95902022】【解析】 两直线平行不一定有斜率,①假.由·<0只能说明∠ABC为锐角,当△ABC为钝角三角形时,·的符