资源描述:
《高中数学公式大全(最新整理版)98894》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、.高中数学公式大全(最新整理版)1、二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.2、四种命题的相互关系原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否;逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否;否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆;逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否§函数1、若,则函数的图象关于点对称;若,则函数为周期为的周期函数.2、函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.3、两个函
2、数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.4、若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5、互为反函数的两个函数的关系:.6、若函数存在反函数,则其反函数为,并不是,而函数是的反函数.7、几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,§数列...1、数列的同项公式与前n项的和的关系(数列的前
3、n项的和为).2、等差数列的通项公式;其前n项和公式为.3、等比数列的通项公式;其前n项的和公式为或.4、等比差数列:的通项公式为;其前n项和公式为.§三角函数1、同角三角函数的基本关系式,=,.2、正弦、余弦的诱导公式(奇变偶不变,符号看象限)(n为偶数)(n为奇数)(n为偶数)(n为奇数)3、和角与差角公式;;.(平方正弦公式);.=(辅助角所在象限由点的象限决定,...).4、二倍角公式...5、三倍角公式...6、三角函数的周期公式函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的
4、周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.7、正弦定理 .8、余弦定理;;.9、面积定理(1)(分别表示a、b、c边上的高).(2).(3).§平面向量1、两向量的夹角公式(a=,b=).2、平面两点间的距离公式=(A,B)....3、向量的平行与垂直设a=,b=,且b0,则a
5、
6、bb=λa.ab(a0)a·b=0.4、线段的定比分公式 设,,是线段的分点,是实数,且,则().5、三角形的重心坐标公式△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.6、三角形五“心”向量形式的充
7、要条件设为所在平面上一点,角所对边长分别为,则(1)为的外心.(2)为的重心.(3)为的垂心.(4)为的内心.(5)为的的旁心.§直线和圆的方程1、斜率公式(、).2、直线的五种方程(1)点斜式(直线过点,且斜率为).(2)斜截式(b为直线在y轴上的截距).(3)两点式()(、()).(4)截距式(分别为直线的横、纵截距,)(5)一般式(其中A、B不同时为0).3、两条直线的平行和垂直(1)若,①;②.(2)若,,且A1、A2、B1、B2都不为零,...①;②;4、点到直线的距离(点,直线:).5、圆的
8、四种方程(1)圆的标准方程.(2)圆的一般方程(>0).(3)圆的参数方程.(4)圆的直径式方程(圆的直径的端点是、).6、直线与圆的位置关系直线与圆的位置关系有三种:;.其中.7、圆的切线方程(1)已知圆.①若已知切点在圆上,则切线只有一条,其方程是.当圆外时,表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.(2)已知圆.①过圆上的点的切线方程为;②斜率为的圆的切
9、线方程为.§圆锥曲线方程1、椭圆的参数方程是.2、椭圆焦半径公式,.3、椭圆的切线方程...(1)椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是.4、双曲线的焦半径公式,.5、双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).6、双曲线的切线方程(1)双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)
10、双曲线与直线相切的条件是.7、抛物线的焦半径公式:抛物线焦半径.过焦点弦长.8、二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.9、抛物线的切线方程...(1)抛物线上一点处的切线方程是.(2)过抛物线外一点所引两条切线的切点弦方程是.(3)抛物线与直线相切的条件是.1、球的半径是R,则其体积,其表面积.2、柱体、锥体的体积(是柱体的底面积、是柱体的高).(是锥体的底面积、是锥体的高).3、回归直线方程,其中