高 中 数 学 教 学 论 文

高 中 数 学 教 学 论 文

ID:35566139

大小:99.91 KB

页数:6页

时间:2019-03-28

高 中 数 学 教 学 论 文_第1页
高 中 数 学 教 学 论 文_第2页
高 中 数 学 教 学 论 文_第3页
高 中 数 学 教 学 论 文_第4页
高 中 数 学 教 学 论 文_第5页
资源描述:

《高 中 数 学 教 学 论 文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、徐州市高中数学教学论文参评论文高中数学教学论文新课程理念下课堂设问情境创设的策略江苏省徐州市铜山县棠张中学史华锋邮编221113联系电话(0)13951353367051683099071(学校)E—mail:tzzxshf@163.com5新课程理念下课堂设问情境创设的策略[内容摘要]问题是数学的心脏,数学教学就必须精心设计数学问题,给学生创设可望、可及且有利于学生建构的问题情境,激发学生学习的兴趣,激发学生的认知内驱力,引发学生合理的认知冲突,促进学生自主学习,提高学习效率。[关键词]新课程创设课堂设问情境《普通高中数学课程标准》(以下简称新课标)指出:“学生的数学

2、学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程”。传统的教师讲、学生听,导致学生被动接受知识,很大程度上阻碍了学生的主动参与,限制了学生的思维活动及相应能力的培养和形成。从过去的旧观念下的那种“满堂灌”,到现在部分教师的“满堂问”都存在着严重的问题。“提出问题比解决问题更为重要(爱因斯坦)”,所以提问不是简单的教师提、学生答,而应该更多的引导学生相互提问。学生只有参与教学实践,参与问题探究,才能建立起自己的认知结构,

3、才能灵活地运用所学知识解决实际问题,才能有所发现、有所创新。下面笔者就在数学教学实践中如何设问有利于学生自主学习,提高学习效率,谈一些做法,以期抛砖引玉。一、创设情境在引人中设问,激发学生兴趣从数学学习的认知本质看,数学学习离不开情境。事实上,学生学习知识的过程本身是一个建构的过程,无论是对知识的理解,还是知识的运用,都离不开知识产生的环境和适用的范围。新课标强调让学生在现实情境和已有的生活、知识经验的基础上学习和理解数学,“问题—情境”是数学课程标准倡导的教学模式。它包含两层含义:首先是要有“问题”,即当学生利用已有的认知还不能理解或者不能正确解答的数学问题,当然,问

4、题的障碍性不能影响学生接受和产生兴趣,否则,至少不能称为好问题;其次是“情境”,即数学知识产生或应用的具体环境,这种环境可以是真实的生活环境、虚拟的社会环境、经验性的想象环境,也可以是抽象的数学环境等等。因此,在新课的引入过程中,教师要对教材内容进行二次开发,精心创设问题情境,通过教师的适当引导,使学生进入最佳的学习状态,同时还要激活学生的主体意识,充分调动学生的积极性、主动性和创造性,使学生最大限度地参与探究新知识活动,让学生在参与中感受成功的兴奋和学习的乐趣,促使学生全身心地投入学习,注意把知识内容与生活实践结合起来,精心设问。那么,创设引人问题情境的基本策略是什么

5、呢?如何在引人中设问呢?1、引疑激趣策略教育近代教育学家斯宾塞指出:“教育要使人愉快,要让一切教育有乐趣”。乌辛斯基也指出:“没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望”。因此,教师设计问题时,要新颖别致,使学生学习有趣味感、新鲜感。案例1:“二分法”的引入在央视由著名节目主持人李泳主持的“非常6+1”中有一个栏目叫“竞猜价格”,你知道如何才能最快速度猜准价格吗?“一石激起千层浪”学生纷纷议论,趁机我又设计了一个小游戏:同位同学相互合作猜生日,看那一组能用“最少的次数”猜出对方同学的生日?你共用了多少次?5通过创设趣味性的问题情境,增强了学生的有意注意,调动学

6、生学习的主动性和积极性,激发了学生学习的求知欲和学习数学的兴趣。2、设置坡度策略心理学家把问题从提出到解决的过程称为“解答距”。并根据解答距的长短把它分为“微解答距”、“短解答距”、“长解答距”和“新解答距”四个级别。所以,教师设计问题应合理配置几个级别的问题。对知识的重点、难点,应象攀登阶梯一样,由浅入深,由易到难,由简到繁,已达到掌握知识、培养能力的目的。案例2:已知函数,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在()上是增函数还是减函数?(4)它在(-,0)上是增函数还是减函数?上述第(3)、(4)问的解决实际上为偶函数在对称区间单调性

7、的关系揭示提供了一个具体示例。在这样的感性认识下,接着可安排如下训练题:(1)已知奇函数在[]上是减函数,试问:它在[]上是增函数还是减函数?(2)已知偶函数在[]上是增函数,试问:它在[]上是增函数还是减函数?(3)奇、偶函数在关于原点对称区间上的单调性有何规律?根据“解答距”的四个级别,层层设问,步步加难,把学生思维一步一个台阶引向求知的高度。在面对这样一个题目时,学生心理已经有了准备,不会感觉到无从下手。同时上一个问题解决也为一般结论的得出提供了一个思考的方向。这样知识的掌握的过程是一种平缓的过程,新的知识的形成不是一蹴而就的,理解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。