欢迎来到天天文库
浏览记录
ID:35505334
大小:55.92 KB
页数:6页
时间:2019-03-25
《数学考试大纲2011》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2011全国硕士研究牛入学统一考试数学考试大纲数学二考试科目高等数学、线性代数试卷结构总分试卷满分为150分,考试时间180分钟内容比例高等数学约78%线性代数约22%题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷
2、小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。了解函数的有界性、单调性、周期性和奇偶性。理解复合函数及分段函数的概念,了解反函数及隐函数的概念。掌握基木初等函数的性质及其图形,了解初等函数的概念。理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。掌握极
3、限的性质及四则运算法则。掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。10・了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。一元两数微分学考试内容导数和微分的概念,导数的儿何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本
4、初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的两数的微分法,高阶导数,一阶微分形式的不变性,微分屮值定理,洛必达(L'Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平而曲线的切线方程和法线方程,了解导数的物理意义,会川导数描述一•些物理量,理解两数的可导性与连续性Z间的关系。掌握导数的四则运算法则和复合函数的求导法则
5、,掌握基木初等函数的导数公式。了解微分的四则运算法则和-•阶微分形式的不变性,会求两数的微分。了解高阶导数的概念,会求简单函数的高阶导数。会求分段两数的导数,会求隐两数和由参数方程所确定的两数以及反函数的导数。理解并会用罗尔(Rolle)定理、拉格朗Fl(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。掌握用洛必达法则求未定式极限的方法。理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。会用导数判断两数图形的凹凸性(注
6、:在区间(a,b)内,设函数f(x)具有二阶导数,当时,f(x)的图形是凹的;当时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅肓和斜渐近线,会描绘两数的图形。了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。一元两数积分学考试内容原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质,定积分屮值定理,积分上限的函数及其导数,牛顿一莱布尼茨(NewtomLeibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理函数、三角函数的有理式和简单无理函数的积分,反常(广义)
7、积分,定积分的应用考试要求理解原函数的概念,理解不定积分与定积分的概念。掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。会求有理两数、三角函数有理式和简单无理两数的积分。理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。了解反常积分的概念,会计算反常积分。掌握用定积分表达和计算一些儿何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平等截面血■积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。多元两数微积分学考试内容多元函数的概
8、念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域上二元连续函数的性质,多元函数的偏导数和全微分,多元复合函数、隐函数的求导法,二阶偏导数,多元函数的极值和条件极值、最大值和最小值,二重积分的概念、基本性质和计算考试要求了解多元函数的概念,了解二元函数的几何意义。了解二元两数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。了
此文档下载收益归作者所有