Mathematics - Complex Algebra 2001

Mathematics - Complex Algebra 2001

ID:34615139

大小:83.73 KB

页数:15页

时间:2019-03-08

Mathematics - Complex Algebra 2001_第1页
Mathematics - Complex Algebra 2001_第2页
Mathematics - Complex Algebra 2001_第3页
Mathematics - Complex Algebra 2001_第4页
Mathematics - Complex Algebra 2001_第5页
资源描述:

《Mathematics - Complex Algebra 2001》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ComplexNumbersandFunctions______________________________________________________________________________________________NaturalisthemostfertilesourceofMathematicalDiscoveries-JeanBaptisteJosephFourierTheComplexNumberSystemDefinition:Acomplexnumberzisanumberoftheformzai=+b,wherethesymb

2、oli=-1iscalledimaginaryunitandabR,.Îaiscalledtherealpartandbtheimaginarypartofz,writtenaz=Reandbz=Im.Withthisnotation,wehavezz=+ReizIm.ThesetofallcomplexnumbersisdenotedbyCai=+{}b,.abRÎIfb=0,thenzaia=+=0,isarealnumber.Alsoifa=0,thenzi=+=0,bibisaimaginarynumber;inthiscase,ziscalledpure

3、imaginarynumber.Letaib+andcid+becomplexnumbers,withabcdR,,,Î.1.Equalityaibcid+=+ifandonlyifac==andbd.Note:Inparticular,wehavezai=+=b0ifandonlyifab==00and.2.FundamentalAlgebraicPropertiesofComplexNumbers(i).Addition()aibcidacibd+++=+++()()().(ii).Subtraction()aibcidacibd+-+=-+-()()().(

4、iii).Multiplication()a++=-++ibcid()()()acbdiadbc.Remark(a).Byusingthemultiplicationformula,onedefinesthenonnegativeintegralpowerofacomplexnumberzas1232nn-1zzzz===,,,zzzz!,.zzz=0Furtherforz¹0,wedefinethezeropowerofzis1;thatis,z=1.(b).Bydefinition,wehave234i=-1,ii=-,i=1.(iv).DivisionIfc

5、id+¹0,thenaib+æacbd+öæbc-adö=ç22÷+iç22÷.cid+ècd+øècd+øRemark(a).Observethatifaib+=1,thenwehave1æcöæ-dö=ç÷+iç÷.è22øè22øcid+cd+cd+(b).Foranynonzerocomplexnumberz,wedefine1-1z=,z-1whereziscalledthereciprocalofz.(c).Foranynonzerocomplexnumberz,wenowdefinethenegativeintegralpowerofacomplex

6、numberzas1--12-1-1-3-2--1nn-+1-1z==,,,zzzzz=z!,.zzz=z1-1-2-3-4(d).i==-i,i=-1,ii=,i=1.i3.MorePropertiesofAdditionandMultiplicationForanycomplexnumberszzz,,andz,123(i).CommutativeLawsofAdditionandMultiplication:zzzz+=+;1221zz=zz.1221(ii)AssociativeLawsofAdditionandMultiplication:zzzzzz+

7、+=++()();123123zzz()().=zzz123123(iii).DistributiveLaw:zzz()+=+zzzz.1231213(iv).AdditiveandMultiplicativeidentities:zz+=+=00z;zz×=×=11z.(v).zzzz+-=-+=()()0.ComplexConjugateandTheirPropertiesDefinition:Let.z=a+ibÎC,a,bÎRThecomplexconjugate,orbrieflyconjugate,ofzisdefinedbyzai=-b.Forany

8、compl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。