Mathematics - Fundamental Problems in Algorithmic Algebra

Mathematics - Fundamental Problems in Algorithmic Algebra

ID:34661887

大小:5.06 MB

页数:546页

时间:2019-03-08

Mathematics - Fundamental Problems in Algorithmic Algebra_第1页
Mathematics - Fundamental Problems in Algorithmic Algebra_第2页
Mathematics - Fundamental Problems in Algorithmic Algebra_第3页
Mathematics - Fundamental Problems in Algorithmic Algebra_第4页
Mathematics - Fundamental Problems in Algorithmic Algebra_第5页
资源描述:

《Mathematics - Fundamental Problems in Algorithmic Algebra》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、§1.ProblemofAlgebraLecture0Page1Lecture0INTRODUCTIONThislectureisanorientationonthecentralproblemsthatconcernus.Specifically,weidentifythreefamiliesof“FundamentalProblems”inalgorithmicalgebra(§1–§3).Intherestofthelecture(§4–§9),webrieflydiscussthecomplexity-theoreticbackground.§10collect

2、ssomecommonmathematicalterminologywhile§11introducescomputeralgebrasystems.Thereadermayprefertoskip§4-11onafirstreading,andonlyusethemasareference.Allourringswillcontainunitywhichisdenoted1(anddistinctfrom0).Theyarecommutativeexceptinthecaseofmatrixrings.Themainalgebraicstructuresofinte

3、restare:N=naturalnumbers0,1,2,...Z=integersQ=rationalnumbersR=realsC=complexnumbersR[X]=polynomialringind≥1variablesX=(X1,...,Xn)withcoefficientsfromaringR.LetRbeanyring.ForaunivariatepolynomialP∈R[X],weletdeg(P)andlead(P)denoteitsdegreeandleadingcoefficient(orleadingcoefficient).IfP=0thenby

4、definition,deg(P)=−∞andlead(P)=0;otherwisedeg(P)≥0andlead(P)=0.WesayPisa(respectively)integer,rational,realorcomplexpolynomial,dependingonwhetherRisZ,Q,RorC.Inthecourseofthisbook,wewillencounterotherrings:(e.g.,§I.1).Withtheexceptionofmatrixrings,allourringsarecommutative.Thebasicalgeb

5、raweassumecanbeobtainedfromclassicssuchasvanderWaerden[22]orZariski-Samuel[27,28].§1.FundamentalProblemofAlgebraConsideranintegerpolynomialniP(X)=aiX(ai∈Z,an=0).(1)i=0ManyoftheoldestproblemsinmathematicsstemfromattemptstosolvetheequationP(X)=0,(2)i.e.,tofindnumbersαsuchthatP(α)=0.Weca

6、llsuchanαasolutionofequation(2);alterna-tively,αisarootorzeroofthepolynomialP(X).Bydefinition,analgebraicnumberisazeroofsomepolynomialP∈Z[X].TheFundamentalTheoremofAlgebrastatesthateverynon-constantpoly-nomialP(X)∈C[X]hasarootα∈C.Putanotherway,Cisalgebraicallyclosed.d’Alembertfirstformul

7、atedthistheoremin1746butGaussgavethefirstcompleteproofinhis1799doctoralthesiscChee-KengYapMarch6,2000§1.ProblemofAlgebraLecture0Page2atHelmstedt.Itfollowsthattherearen(notnecessarilydistinct)complexnumbersα1,...,αn∈Csuchthatthepolynomialin(1)isequaltonP(X)≡an(X−αi).(3)i=1Toseethis,s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。