欢迎来到天天文库
浏览记录
ID:34547514
大小:146.53 KB
页数:5页
时间:2019-03-07
《中学数学交集、并集·典型例题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、http://www.caijj.com/交集、并集·典型例题能力素质例1已知M={y
2、y=x2+1,x∈R},N={y
3、y=-x2+1,x∈R}则M∩N是[]A.{0,1}B.{(0,1)}C.{1}D.以上均不对分析先考虑相关函数的值域.解∵M={y
4、y≥1},N={y
5、y≤1},∴在数轴上易得M∩N={1}.选C.2例2已知集合A={x
6、x+mx+1=0},如果A∩R=∅,则实数m的取值范围是[]A.m<4B.m>4C.0<m<4D.0≤m<4分析∵A∩R=∅,∴A=∅.2所以x+Mx+1=0无实数根
7、,由⎧⎪m≥0,⎨2⎩⎪Δ=(m)-4<0,可得0≤m<4.答选D.例3设集合A={x
8、-5≤x<1},B={x
9、x≤2},则A∪B=[]A.{x
10、-5≤x<1}B.{x
11、-5≤x≤2}C.{x
12、x<1}D.{x
13、x≤2}分析画数轴表示⊂得A∪B={x
14、x≤2},A∪B=B.(注意A≠B,也可以得到A∪B=B).答选D.说明:集合运算借助数轴是常用技巧.http://www.caijj.com/http://www.caijj.com/例4集合A={(x,y)
15、x+y=0},B={(x,y)
16、x-y=2},
17、则A∩B=________.分析A∩B即为两条直线x+y=0与x-y=2的交点集合.⎧x+y=0,⎧x=1,解由⎨得⎨⎩x-y=2⎩y=-1.所以A∩B={(1,-1)}.说明:做题之前要搞清楚集合的元素是什么.例5下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B,其中正确的个数为[]A.1B.2C.3D.4分析根据交集、并集的定义,①是错误的推理.答选C.点击思维例6已知全集U=R,A={x
18、-4≤x<2},B={x
19、-1<x=___
20、_____.号的值.解观察数轴得,A∩B={x
21、-1<x<2},A∩B∩(UP)={x
22、0<x<2}.例7设A={x∈R
23、f(x)=0},B={x∈R
24、g(x)=0},f(x)C={x∈R
25、=0},全集U=R,那么g(x)[]A.C=A∪(UR)B.C=A∩(UB)http://www.caijj.com/http://www.caijj.com/C.C=A∪BD.C=(UA)∩B分析依据分式的意义及交集、补集的概念逐步化归f(x)C={x∈R
26、=0}g(x)={x∈R
27、f(x)=0且g(x)≠0}={x∈
28、R
29、f(x)=0}∩{x∈R
30、g(x)≠0}=A∩(UB).答选B.说明:本题把分式的意义与集合相结合.例8集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A∪B有________个元素.分析一种方法,由集合A∩B含有3个元素知,A,B仅有3个元素相同,根据集合元素的互异性,集合A∪B的元素个数为10+8-3=15.另一种方法,画图1-10观察可得.答填15.例9已知全集U={x
31、x取不大于30的质数},A,B是U的两个子集,且A∩(UB)={5,13,23},(UA)∩B={11,
32、19,29},(UA)∩(UB)={3,7}求A,B.分析由于涉及的集合个数,信息较多,所以可以通过画图1-11直观地求解.解∵U={2,3,5,7,11,13,17,19,23,29}用图形表示出A∩(UB),(UA)∩B及(UA)∩(UB)得U(A∪B)={3,7},A∩B={2,17},所以A={2,5,13,17,23},B={2,11,17,19,29}.http://www.caijj.com/http://www.caijj.com/说明:对于比较复杂的集合运算,可借助图形.学科渗透例10设集
33、合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B.分析欲求A∪B,需根据A∩B={9}列出关于x的方程,求出x,从而确定A、B,但若将A、B中元素为9的情况一起考虑,头绪太多了,因此,宜先考虑集合A,再将所得值代入检验.解由9∈A可得x2=9或2x-1=9,解得x=±3或5.当x=3时,A={9,5,-4},B={-2,-2,9},B中元素违反互异性,故x=3应舍去;当x=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,此时A∪B={-7,
34、-4,-8,4,9}当x=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},这与A∩B={9}矛盾.故x=5应舍去.从而可得x=-3,且A∪B={-8,-4,4,-7,9}.说明:本题解法中体现了分类讨论思想,这在高中数学中是非常重要的.例11设A={x
35、x2+4x=0},B={x
36、x2+2(a+1)x+a2-1=0},若A∩B=B,求a的值.2分析由A∩B=B,B⊆A,而A={x
37、x
此文档下载收益归作者所有