Introduction to Differential Forms.pdf

Introduction to Differential Forms.pdf

ID:34265960

大小:157.80 KB

页数:20页

时间:2019-03-04

Introduction to Differential Forms.pdf_第1页
Introduction to Differential Forms.pdf_第2页
Introduction to Differential Forms.pdf_第3页
Introduction to Differential Forms.pdf_第4页
Introduction to Differential Forms.pdf_第5页
资源描述:

《Introduction to Differential Forms.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Introductiontodi erentialformsDonuArapuraThisisasupplementformyMath362class.Thecalculusofdi erentialformsgivesanalternativetovectorcalculuswhich,althoughquitecompelling,israrelytaughtatthislevel.11-formsAdi erential1-form(orsimplyadi erentialora1-form)onanopensubset

2、ofR2isanexpressionF(x;y)dx+G(x;y)dywhereF;GareR-valuedfunctionsontheopenset.Averyimportantexampleofadi erentialisgivenasfollows:Iff(x;y)isC1R-valuedfunctiononanopensetU,thenitstotaldi erential(orexteriorderivative)is@f@fdf=dx+dy@x@gItisadi erentialonU.Inasimilarfash

3、ion,adi erential1-formonanopensubsetofR3isanexpressionF(x;y;z)dx+G(x;y;z)dy+H(x;y;z)dzwhereF;G;HareR-valuedfunctionsontheopenset.Iff(x;y;z)isaC1functiononthisset,thenitstotaldi erentialis@f@f@fdf=dx+dy+dz@x@y@zAtthisstage,itisworthpointingoutthatadi erentialformisve

4、rysimilartoavector eld.Infact,wecansetupacorrespondence:Fi+Gj+Hk$Fdx+Gdy+HdzUnderthissetup,thegradientrfcorrespondstodf.Thusitmightseemthatallwearedoingiswritingthepreviousconceptsinafunnynotation.However,thenotationisverysuggestiveandultimatelyquitepowerful.Suppose

5、thatthatx;y;zdependonsomeparametert,andfdependsonx;y;z,thenthechainrulesaysdf@fdx@fdy@fdz=++dt@xdt@ydt@zdtThustheformulafordfcanbeobtainedbycancelingdt.12ExactnessinR2SupposethatFdx+Gdyisadi erentialonR2withC1coecients.Wewillsaythatitisexactifonecan ndaC2functionf(

6、x;y)withdf=Fdx+GdyMostdi erentialformsarenotexact.Toseewhy,notethattheaboveequationisequivalentto@f@fF=;G=:@x@yThereforeiffexiststhen@F@2f@2f@G===@y@y@x@x@y@xButthisequationwouldfailformostexamplessuchasydx.Wewillcalladi erentialclosedif@Fand@Gareequal.Sowehavejusts

7、hownthatifa@y@xdi erentialistobeexact,thenithadbetterbeclosed.Exactnessisaveryimportantconcept.You'veprobablyalreadyencountereditinthecontextofdi erentialequations.Givenanequationdy=F(x;y)dxwecanrewriteitasFdxdy=0Ifthedi erentialontheleftisexactandequaltosay,df,the

8、nthecurvesf(x;y)=cgivesolutionstothisequation.Theseconceptsariseinphysics.Forexamplegivenavector eldF=F1i+F2jrepresentingaforce,onewouldli

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。