资源描述:
《Introduction to Differential Forms.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、IntroductiontodierentialformsDonuArapuraThisisasupplementformyMath362class.Thecalculusofdierentialformsgivesanalternativetovectorcalculuswhich,althoughquitecompelling,israrelytaughtatthislevel.11-formsAdierential1-form(orsimplyadierentialora1-form)onanopensubset
2、ofR2isanexpressionF(x;y)dx+G(x;y)dywhereF;GareR-valuedfunctionsontheopenset.Averyimportantexampleofadierentialisgivenasfollows:Iff(x;y)isC1R-valuedfunctiononanopensetU,thenitstotaldierential(orexteriorderivative)is@f@fdf=dx+dy@x@gItisadierentialonU.Inasimilarfash
3、ion,adierential1-formonanopensubsetofR3isanexpressionF(x;y;z)dx+G(x;y;z)dy+H(x;y;z)dzwhereF;G;HareR-valuedfunctionsontheopenset.Iff(x;y;z)isaC1functiononthisset,thenitstotaldierentialis@f@f@fdf=dx+dy+dz@x@y@zAtthisstage,itisworthpointingoutthatadierentialformisve
4、rysimilartoavectoreld.Infact,wecansetupacorrespondence:Fi+Gj+Hk$Fdx+Gdy+HdzUnderthissetup,thegradientrfcorrespondstodf.Thusitmightseemthatallwearedoingiswritingthepreviousconceptsinafunnynotation.However,thenotationisverysuggestiveandultimatelyquitepowerful.Suppose
5、thatthatx;y;zdependonsomeparametert,andfdependsonx;y;z,thenthechainrulesaysdf@fdx@fdy@fdz=++dt@xdt@ydt@zdtThustheformulafordfcanbeobtainedbycancelingdt.12ExactnessinR2SupposethatFdx+GdyisadierentialonR2withC1coecients.WewillsaythatitisexactifonecanndaC2functionf(
6、x;y)withdf=Fdx+GdyMostdierentialformsarenotexact.Toseewhy,notethattheaboveequationisequivalentto@f@fF=;G=:@x@yThereforeiffexiststhen@F@2f@2f@G===@y@y@x@x@y@xButthisequationwouldfailformostexamplessuchasydx.Wewillcalladierentialclosedif@Fand@Gareequal.Sowehavejusts
7、hownthatifa@y@xdierentialistobeexact,thenithadbetterbeclosed.Exactnessisaveryimportantconcept.You'veprobablyalreadyencountereditinthecontextofdierentialequations.Givenanequationdy=F(x;y)dxwecanrewriteitasFdx dy=0Ifthedierentialontheleftisexactandequaltosay,df,the
8、nthecurvesf(x;y)=cgivesolutionstothisequation.Theseconceptsariseinphysics.ForexamplegivenavectoreldF=F1i+F2jrepresentingaforce,onewouldli