introduction to differential topology - brin

introduction to differential topology - brin

ID:14321647

大小:471.97 KB

页数:59页

时间:2018-07-27

introduction to differential topology - brin_第1页
introduction to differential topology - brin_第2页
introduction to differential topology - brin_第3页
introduction to differential topology - brin_第4页
introduction to differential topology - brin_第5页
资源描述:

《introduction to differential topology - brin》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IntroductiontoDi erentialTopologyMatthewG.BrinDepartmentofMathematicalSciencesStateUniversityofNewYorkatBinghamtonBinghamton,NY13902-6000Spring,1994Contents0.Introduction......................21.Basics........................22.DerivativeandChainrule

2、inEuclideanspaces.........73.Threederivatives...................134.Higherderivatives...................155.Thefullde nitionofdi erentiablemanifold.........176.Thetangentspaceofamanifold.............187.TheInverseFunctionTheorem..............22r8.The

3、Ccategoryanddi eomorphisms...........309.Vector eldsand ows.................3110.ConsequencesoftheInverseFunctionTheorem.......3711.Submanifolds....................4012.Bumpfunctionsandpartitionsofunity..........43113.TheCmetric...................491

4、4.Thetangentspaceoveracoordinatepatch.........5315.Approximations...................5416.Sard'stheorem...................5517.Transversality....................5718.Manifoldswithboundary................5810.Introduction.Thisisaquicksetofnotesonbasicd

5、i erentialtopology.Itgetssketchierasitgoeson.Thelastfewsectionsareonlytointroducetheterminologyandsomeoftheconcepts.ThesenoteswerewrittenfasterthanIcanreadandmaymakenosenseinspots.WereItodothemagain,the rstfewtopicswouldberearrangedintoadi erentorder

6、.Iamtoldthattherearemanymisprints.Thenotesweredesignedtogiveaquickanddirty,halfsemesterintroductiontodi erentialtopologytostudentsthathad nishedgoingthroughalmostallofTopology:A rstcoursebyJamesR.Munkres.TherearereferencestothisbookasMunkres"inthese

7、notes.Thenoteswerewrittensothatallofthematerialcouldbepresentedbythestudentsinclass.Thisexplainsvariousexhortationstopresenters"thatoccurperiodicallythroughoutthenotes.Icribbedfromthreemainsources:(1)SergeLang,Di erentialmanifolds,AddisonWesley,1972

8、,(2)MorrisW.Hirsch,Di erentialtopology,Springer-Verlag,1976,and(3)MichaelSpivak,Calculusonmanifolds,Benjamin,1965.Thelastisaparticularlyprettybookthatunfortunatelyseemstobeoutofprint.Ialsostolefromafewpagesin(4)JamesR.Munkres,Elementarydi erentialtop

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。