On Introduction to Algebraic Topology

On Introduction to Algebraic Topology

ID:40694973

大小:371.70 KB

页数:71页

时间:2019-08-06

On Introduction to Algebraic Topology_第1页
On Introduction to Algebraic Topology_第2页
On Introduction to Algebraic Topology_第3页
On Introduction to Algebraic Topology_第4页
On Introduction to Algebraic Topology_第5页
资源描述:

《On Introduction to Algebraic Topology》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LecturesonIntroductiontoAlgebraicTopologyByG.deRhamNotesbyV.J.LalNopartofthisbookmaybereproducedinanyformbyprint,microfilmoranyothermeanswith-outwrittenpermissionfromtheTataInstituteofFundamentalResearch,Colaba,Bombay5TataInstituteofFundamentalResearch

2、,Bombay1969PrefaceThesearenotesofapartoflectureswhichIgaveattheTataIn-stituteofFundamentalResearchin1966.TheywereintentedasafirstintroductiontoalgebraicTopology.MythanksareduetoV.J.Lalforhiscarefulpreparationofthesenotes,andtotheTataInstituteofFundamen

3、talResearchforitskindinvitation.G.deRhamContents1Definitionandgeneralpropertiesofthefundamentalgroup12Freeproductsofgroupsandtheirquotients.......73Oncalculationoffundamentalgroups..........184Examples.........................265Thegroupofatamelinkgive

4、nbyagoodplaneprojection316Antoine'sNecklace....................347Elementaryideals-Alexanderpolynomials........398Constructionof3-manifolds...............449InvolutionsofS4.........................55iii1.Definitionandgeneralpropertiesofthefundamentalgr

5、oup11Definitionandgeneralpropertiesofthefunda-mentalgroupWecallacontinuousmapsimplyamap.WedenotethereallinebyR1andtheunitintervalbyI:I={t

6、t∈R,0≤t≤1}.WeconsidermapsofIintoatopologicalspaceXandsaythatamapf1isequivalenttoamapf2ifthereexistsanautomorphismϕ

7、ofIfixingendpointssuchthatf1=f2◦φ.ThisisanequivalencerelationinthesetofallmapsofIintoX.AnequivalenceclassunderthisrelationiscalledapathinX.WesaythatamapfdefinesapathWiffbelongstotheequivalenceclassW.Clearlyanytwomapsdefiningthesamepathmap0ontothesamepoin

8、tandalso1.Theimagesof0and1arecalledtheinitialandtheterminalpointofthepath.Wesaythatapathconnectsapointxtoapointyifxandyaretheinitialandterminalpointsofthepath.SupposethatamapfdefinesapathWconnectingx0tox1.Thenthemapf−1(t)=f(1−t),0≤t≤1definesapathW−1whic

9、hcanbeseentobedependentonlyonW.Thispathconnectingx1tox0iscalledthepathWdescribedintheoppositesenseorthereversedpathofW.IfCisaJordanarc,i.e.asethomeomorphictoI,therearetwopathsdefinesbyhomeomorphismofIontoC,eachreversedtotheother,andcorrespondin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。