欢迎来到天天文库
浏览记录
ID:40694973
大小:371.70 KB
页数:71页
时间:2019-08-06
《On Introduction to Algebraic Topology》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LecturesonIntroductiontoAlgebraicTopologyByG.deRhamNotesbyV.J.LalNopartofthisbookmaybereproducedinanyformbyprint,microfilmoranyothermeanswith-outwrittenpermissionfromtheTataInstituteofFundamentalResearch,Colaba,Bombay5TataInstituteofFundamentalResearch
2、,Bombay1969PrefaceThesearenotesofapartoflectureswhichIgaveattheTataIn-stituteofFundamentalResearchin1966.TheywereintentedasafirstintroductiontoalgebraicTopology.MythanksareduetoV.J.Lalforhiscarefulpreparationofthesenotes,andtotheTataInstituteofFundamen
3、talResearchforitskindinvitation.G.deRhamContents1Definitionandgeneralpropertiesofthefundamentalgroup12Freeproductsofgroupsandtheirquotients.......73Oncalculationoffundamentalgroups..........184Examples.........................265Thegroupofatamelinkgive
4、nbyagoodplaneprojection316Antoine'sNecklace....................347Elementaryideals-Alexanderpolynomials........398Constructionof3-manifolds...............449InvolutionsofS4.........................55iii1.Definitionandgeneralpropertiesofthefundamentalgr
5、oup11Definitionandgeneralpropertiesofthefunda-mentalgroupWecallacontinuousmapsimplyamap.WedenotethereallinebyR1andtheunitintervalbyI:I={t
6、t∈R,0≤t≤1}.WeconsidermapsofIintoatopologicalspaceXandsaythatamapf1isequivalenttoamapf2ifthereexistsanautomorphismϕ
7、ofIfixingendpointssuchthatf1=f2◦φ.ThisisanequivalencerelationinthesetofallmapsofIintoX.AnequivalenceclassunderthisrelationiscalledapathinX.WesaythatamapfdefinesapathWiffbelongstotheequivalenceclassW.Clearlyanytwomapsdefiningthesamepathmap0ontothesamepoin
8、tandalso1.Theimagesof0and1arecalledtheinitialandtheterminalpointofthepath.Wesaythatapathconnectsapointxtoapointyifxandyaretheinitialandterminalpointsofthepath.SupposethatamapfdefinesapathWconnectingx0tox1.Thenthemapf−1(t)=f(1−t),0≤t≤1definesapathW−1whic
9、hcanbeseentobedependentonlyonW.Thispathconnectingx1tox0iscalledthepathWdescribedintheoppositesenseorthereversedpathofW.IfCisaJordanarc,i.e.asethomeomorphictoI,therearetwopathsdefinesbyhomeomorphismofIontoC,eachreversedtotheother,andcorrespondin
此文档下载收益归作者所有