answers and hints to selected problems.pdf

answers and hints to selected problems.pdf

ID:33861188

大小:2.31 MB

页数:37页

时间:2019-03-01

answers and hints to selected problems.pdf_第1页
answers and hints to selected problems.pdf_第2页
answers and hints to selected problems.pdf_第3页
answers and hints to selected problems.pdf_第4页
answers and hints to selected problems.pdf_第5页
资源描述:

《answers and hints to selected problems.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnswersandHintstoSelectedProblemsProblemsofChapter11.2Foreacha∈A,theremaynotbeoneb∈AsuchthataRb.Forexample,therelation{(b,b)}ontheset{a,b}.2A2n2n2−n1.4R⊆A.So,R∈2.NumberofsuchRis2.ReflexiveR’sare2innumber.And2n(n+1)/2symmetricR’s.1.5xR−1yiffyRx.Hencetheyhavethes

2、ameequivalenceclasses.1.6Takef(x)asthenumberofelementsinx.1.7B={[x]:x∈A}.Definef:A→Bbyf(x)=[x].1.9∪A=∅.UseDeMorgan’slawtoget∩A=A.1.12f(x)=f(y)impliesx=g(f(x))=g(f(y))=y.Hencefisinjective.Now,f(g(y))=yshowsthatf(x)=yforx=g(y).Hencefissurjective.1.13(d)g◦finjecti

3、veimpliesfisinjective;gneednotbeinjective.(e)g◦fsurjectiveimpliesgissurjective;fneednotbesurjective.1.15UseProblem1.12.1.24Supposethecollectionofallsetsisaset;denoteitbyS.Eachelementof2Sisaset,andhenceisinS.Thatis,2S⊆S.Then

4、2S

5、≤

6、S

7、.ThiscontradictsCantor’stheor

8、em.1.28LetPnbethesetofallpolynomialsofdegreenwithrationalcoefficients.Definef:P→Qn+1byf(a+ax+···+axn)=(a,a,...,a).Thisfisn01n01ninjective.HencePniscountable.Thesetofallpolynomialswithrationalcoefficientsis∪n∈Z+Pn,andhence,iscountable.EachsuchpolynomialisinsomePna

9、ndhasnroots.Therefore,allrootsofsuchpolynomialsarecountableinnumber.1.33∪r<1{x∈R:a−r≤x≤a+r}={x∈R:a−10{x∈R:a−rx2>...>xn+2.ConsiderthesetA={x1+xk,x1−xk:k=2,

10、3,...,n+2}.Bythepigeonholeprinciple,atleasttwoofthemhavethesameremainderwhendividedby2n.Iftheyareyi,yj∈A,thenconsiderthedifferenceyj−yi.Thisisintheform±(xi±xj)andisdivisibleby2n.1.41Writethen+1numbersintheformx=2qky,whereyisodd.Howmanykkkyk’sarethereatthemost?

11、1.42Forx∈√R,let√'x(denotethelargestintegerlessthanorequalto√√√√x.Considerthenumbers2−'2(,22−'22(,...,(n+1)2−'(n+1)2(.Allthesearebetween0and1.Dividethe0–1intervalintonsubintervalseachoflength1/n.Bypigeonholeprinciple,atleasttwoofthesenumberslieinthesamesubinter

12、val.√Theirdifferenceisoftheformm+n2anditliesbetween0and1/n.ProblemsofChapter2Section2.22.4bbbbaa,baaaaabaaaab∈L∗.2.7(d)Yes.(i)Yes.(j)No.2.13(c)No;e.g.,(L∗)∗=L∗L,ingeneral.(d)Yes,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。