missing data techniques for structural equation modeling结构方程模型的缺失数据技术

missing data techniques for structural equation modeling结构方程模型的缺失数据技术

ID:33320437

大小:154.17 KB

页数:14页

时间:2019-02-24

missing data techniques for structural equation modeling结构方程模型的缺失数据技术_第1页
missing data techniques for structural equation modeling结构方程模型的缺失数据技术_第2页
missing data techniques for structural equation modeling结构方程模型的缺失数据技术_第3页
missing data techniques for structural equation modeling结构方程模型的缺失数据技术_第4页
missing data techniques for structural equation modeling结构方程模型的缺失数据技术_第5页
资源描述:

《missing data techniques for structural equation modeling结构方程模型的缺失数据技术》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、JournalofAbnormalPsychologyCopyright2003bytheAmericanPsychologicalAssociation,Inc.2003,Vol.112,No.4,545–5570021-843X/03/$12.00DOI:10.1037/0021-843X.112.4.545MissingDataTechniquesforStructuralEquationModelingPaulD.AllisonUniversityofPennsylvaniaAswitho

2、therstatisticalmethods,missingdataoftencreatemajorproblemsfortheestimationofstructuralequationmodels(SEMs).Conventionalmethodssuchaslistwiseorpairwisedeletiongenerallydoapoorjobofusingalltheavailableinformation.However,structuralequationmodelersarefor

3、tunatethatmanyprogramsforestimatingSEMsnowhavemaximumlikelihoodmethodsforhandlingmissingdatainanoptimalfashion.Inadditiontomaximumlikelihood,thisarticlealsodiscussesmultipleimputation.Thismethodhasstatisticalpropertiesthatarealmostasgoodasthoseformaxi

4、mumlikelihoodandcanbeappliedtoamuchwiderarrayofmodelsandestimationmethods.VirtuallyallmethodsofstatisticalanalysisareplaguedbydelinquencyandXisyearsofschooling,theMARassumptionproblemswithmissingdata,andstructuralequationmodelingisnowouldbesatisfiedif

5、theprobabilitythatdelinquencyismissingexception.Itiswellknownthattheuseofinappropriatemethodsdependsonyearsofschooling,butwithineachlevelofschoolingforhandlingmissingdatacanleadtobiasinparameterestimatestheprobabilityofmissingdelinquencydoesnotdependo

6、ndelin-(Jones,1996),biasinstandarderrorsandteststatistics(Glasser,quency.Inessence,MARallowsmissingnesstodependonthings1964),andinefficientuseofthedata(Afifi&Elashoff,1966).Thisthatareobserved,butnotonthingsthatarenotobserved.Clearly,articlesurveysvar

7、iousmethodsthatareavailableforhandlingifthedataaremissingcompletelyatrandom,theyarealsomissingmissingdataintheestimationofstructuralequationmodelsatrandom.(SEMs).AfterreviewingsuchconventionalmethodsaslistwiseItisstraightforwardtotestwhetherthedataare

8、missingcom-deletion,pairwisedeletion,andregressionimputation,Ifocusonpletelyatrandom.Forexample,onecouldcomparemenandtheimplementationoftwonewermethods,maximumlikelihoodwomentotestwhethertheydifferintheproportionofcaseswithandmultipleimputatio

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。