欢迎来到天天文库
浏览记录
ID:31965327
大小:1.70 MB
页数:22页
时间:2019-01-29
《高考数学压轴题精编精解》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考数学压轴题精编精解精选100题,精心解答{完整版}1.设函数,,其中,记函数的最大值与最小值的差为。(I)求函数的解析式;(II)画出函数的图象并指出的最小值。2.已知函数,数列满足,;数列满足,.求证:(Ⅰ)(Ⅱ)(Ⅲ)若则当n≥2时,.3.已知定义在R上的函数f(x)同时满足:(1)(R,a为常数);(2);(3)当时,≤2求:(Ⅰ)函数的解析式;(Ⅱ)常数a的取值范围.4.设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)若直线AB过椭圆的焦点F(0,c),(c为
2、半焦距),求直线AB的斜率k的值;(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5.已知数列中各项为:个个12、1122、111222、……、……(1)证明这个数列中的每一项都是两个相邻整数的积.(2)求这个数列前n项之和Sn.6、设、分别是椭圆的左、右焦点.(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得
3、F2C
4、=
5、F2D
6、?若存在,求直线l的方程;若不存在,请说明理由.7、已知动圆过定点P(1
7、,0),且与定直线L:x=-1相切,点C在l上.(1)求动圆圆心的轨迹M的方程;(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.8、定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。9
8、、已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。(1)求实数的取值范围;(2)若函数在区间(-1-,1-)上具有单调性,求实数C的取值范围10、已知函数且任意的、都有(1)若数列(2)求的值.11.在直角坐标平面中,△ABC的两个顶点为A(0,-1),B(0,1)平面内两点G、M同时满足①,②==③∥(1)求顶点C的轨迹E的方程(2)设P、Q、R、N都在曲线E上,定点F的坐标为(,0),已知∥,∥且·=0.求四边形PRQN面积S的最大值和最小值.12.已知为锐角,且,函数
9、,数列{an}的首项.⑴求函数的表达式;⑵求证:;⑶求证:13.(本小题满分14分)已知数列满足(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,证明:是等差数列;(Ⅲ)证明:14.已知函数(I)当时,若函数在区间上是增函数,求实数的取值范围;(II)当时,(1)求证:对任意的,的充要条件是;(2)若关于的实系数方程有两个实根,求证:且的充要条件是15.已知数列{an}前n项的和为Sn,前n项的积为,且满足。①求;②求证:数列{an}是等比数列;③是否存在常数a,使得对都成立?若存在,求出a,若不存在,说明理由。
10、16、已知函数是定义域为R的偶函数,其图像均在x轴的上方,对任意的,都有,且,又当时,其导函数恒成立。(Ⅰ)求的值;(Ⅱ)解关于x的不等式:,其中17、一个函数,如果对任意一个三角形,只要它的三边长都在的定义域内,就有也是某个三角形的三边长,则称为“保三角形函数”.(I)判断,,中,哪些是“保三角形函数”,哪些不是,并说明理由;(II)如果是定义在上的周期函数,且值域为,证明不是“保三角形函数”;(III)若函数,是“保三角形函数”,求的最大值.(可以利用公式)18、已知数列的前n项和满足:(a为常数,且
11、).(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求a的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为Tn.求证:.19、数列中,,(是常数,),且成公比不为的等比数列。(I)求的值;(II)求的通项公式。(III)由数列中的第1、3、9、27、……项构成一个新的数列{b},求的值。20、已知圆上的动点,点Q在NP上,点G在MP上,且满足.(I)求点G的轨迹C的方程;(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线,使四边形OASB的对角线相等(即
12、OS
13、
14、=
15、AB
16、)?若存在,求出直线的方程;若不存在,试说明理由.21.飞船返回仓顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回仓预计到达区域安排三个救援中心(记为A,B,C),B在A的正东方向,相距6km,C在B的北偏东300,相距4km,P为航天员着陆点,某一时刻A接到P的求救信号,由于B、C两地比A距P远,因此4s后,B、C两个救援中心才同时接收到这一信号,已知该信号的传播速度为1km/s.(1)求A、C两个救援中
此文档下载收益归作者所有