欢迎来到天天文库
浏览记录
ID:31929531
大小:2.03 MB
页数:58页
时间:2019-01-28
《《量子力学》试题库完整》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、可编辑版《量子力学》题库一、简答题1试写了德布罗意公式或德布罗意关系式,简述其物理意义答:微观粒子的能量和动量分别表示为:其物理意义是把微观粒子的波动性和粒子性联系起来。等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。2简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。按这种解释,描写粒子的波是几率波。3根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。答:根据量子力学中波函数的几率解释,因为粒
2、子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。4设描写粒子状态的函数可以写成,其中和为复数,和为粒子的分别属于能量和的构成完备系的能量本征态。试说明式子的含义,并指出在状态中测量体系的能量的可能值及其几率。答:的含义是:当粒子处于和的线性叠加态时,粒子是既处于态,又处于态。或者说,当和是体系可能的状态时,它们的线性叠加态也是体系一个可能的状态;或者说,当体系处在态时,体系部分地处于态、中。在状态中测量体系的能
3、量的可能值为和,各自出现的几率为和。5什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。6什么是全同性原理和泡利不相容原理?两者的关系是什么?答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。泡利不相容原理是指不能有两个或两个以上的费米子处于同一状态。两者的关系是由全同性原理出发,推论出全同粒子体系的波函数有确定的交换对称性,将这一性质应用到费米子组成的全同粒子体系,必然推出费米不相容原理。7试简述波函数的标准条件。答:波函数在变量变化的全部区域内应满足三个条件:有限性、连
4、续性和单值性。8为什么表示力学量的算符必须是厄米算符?Word完美格式可编辑版答:因为所有力学量的数值都是实数。而表示力学量的算符的本征值是这个力学量的可能值,所以表示力学量的算符的本征值必须是实数。厄米算符的本征值必定是实数。所以表示力学量的算符必须是厄米算符。9请写出微扰理论适用条件的表达式。答:,10试简述微扰论的基本思想。答:复杂的体系的哈密顿量分成与两部分。是可求出精确解的,而可看成对的微扰。只需将精确解加上由微扰引起的各级修正量,逐级迭代,逐级逼近,就可得到接近问题真实的近似解。11简述费米子的自旋值及其全同粒子体系波函数的特点,这种粒子所遵循的统计规律是什么?答:由电子、质
5、子、中子这些自旋为的粒子以及自旋为的奇数倍的粒子组成的全同粒子体系的波函数是反对称的,这类粒子服从费米(Fermi)-狄拉克(Dirac)统计,称为费米子。12通常情况下,无限远处为零的波函数所描述的状态称为什么态?一般情况下,这种态所属的能级有什么特点?答:束缚态,能级是分立的。13简述两个算符存在共同的完备本征态的充要条件,并举一例说明(要求写出本征函数系)。在这些态中,测量这两个算符对应的力学量时,两个测量值是否可以同时确定?答:两个算符存在共同的完备本征函数系的充要条件是这两个算符对易。例如,,这两个算符有共同的完备本征函数系。14若两个力学量的算符不对易,对这两个力学量同时进行
6、测量时,一般地它们是否可以同时具有确定值?它们的均方偏差之间有什么样的关系?答:不可能同时具有确定值。它们的均方偏差之间满足海森堡不确定性关系。15请写出线性谐振子偶极跃迁的选择定则。答:16指出下列算符哪个是线性的,说明其理由。Word完美格式可编辑版①;②;③解:①是线性算符②不是线性算符③是线性算符17指出下列算符哪个是厄米算符,说明其理由。Word完美格式可编辑版18下列函数哪些是算符的本征函数,其本征值是什么?①,②,③, ④, ⑤解:①∴不是的本征函数。②∴不是的本征函数,其对应的本征值为1。③∴可见,是的本征函数,其对应的本征值为-1。④∴是的本征函数,其对应的本征值为-1
7、。⑤∴是的本征函数,其对应的本征值为-1。Word完美格式可编辑版19问下列算符是否是厄米算符:①②解:①因为∴不是厄米算符。②∴是厄米算符。20全同粒子体系的波函数应满足什么条件?答:描写全同粒子体系的波函数只能是对称的或是反对称的,且它们的对称性不随时间改变。一、证明题1已知粒子在中心力场中运动,试证明(角动量在方向的分量)是守恒量。证:因为粒子在势函数为的中心力场中运动时,哈密顿算答是因为与、有关而与无关,且所以,Word完美
此文档下载收益归作者所有