3.5 相似三角形判定定理的证明.doc

3.5 相似三角形判定定理的证明.doc

ID:31803736

大小:34.50 KB

页数:4页

时间:2019-01-18

3.5 相似三角形判定定理的证明.doc_第1页
3.5 相似三角形判定定理的证明.doc_第2页
3.5 相似三角形判定定理的证明.doc_第3页
3.5 相似三角形判定定理的证明.doc_第4页
资源描述:

《3.5 相似三角形判定定理的证明.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第三章图形的相似5.相似三角形判定定理的证明一、学生知识状况分析“相似三角形判定定理的证明”是“探索三角形相似的条件”之后的一个学习内容,学生已经学习了相似三角形的有关知识,对相似三角形已有一定的认识,并且在前一节课的学习中,以充分经历了猜想,动手操作,得出结论的过程。本节主要进行相似三角形判定定理的证明,证明过程中需添加辅助线,对学生来说具有挑战性,需要通过已有的知识储备,相似三角形的定义以及构造三角形全等的方法完成证明过程。二、教学任务分析本节共一个课时,本节是从证明相似三角形判定定理1、两角分别相等的两个三角形相似入手,使学生进一步通过推理证明

2、上节课所得结论命题1的正确性,从而学会证明的方法,为后续证明判定定理2,3打下基础。三、教学过程分析本节课设计了个教学环节:第一环节:复习回顾,导入课题;第二环节:动手操作、探求新知;第三环节:动手实践,推理证明;第四环节:方法选择,合理应用;第五环节:课堂小结,布置作业。第一环节:复习回顾,导入课题内容:在上节课中,我们通过类比两个三角形全等的条件,寻找并探究判定两个三角形相似的条件,我们得出的结论是怎样的?您能证明它们一定成立吗?目的:通过学生回顾复习已得结论入手,激发学生学习兴趣。效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。第二

3、环节:动手操作,探求新知内容:命题1、两角分别相等的两个三角形相似。如何对文字命题进行证明?与同伴进行交流.目的:通过学生回顾证明文字命题的步骤入手,引导学生进行画图,写出已知,求证。第一步:引导学生根据文字命题画图,第二步:根据图形和文字命题写出已知,求证。已知:如图,在△ABC和△A’B’C’中,∠A=∠A’,∠B=∠B’。求证:△ABC∽△A’B’C’。第三步:写出证明过程。(分析现在能说明两个三角形相似的方法只有相似三角形的定义,我们可以利用这一线索进行探索,已知两角对应相等,根据三角形内角和定理可以推出第三个角也相等,从而可得三角对应相等,

4、下一步,我们只要再证明三边对应成比例即可。根据平行线分线段成比例的推论,我们可以在△ABC内部或外部构造平行线,从而构造出与△A’B’C’全等的三角形。)教师可以以填空的形式进行引导。证明:在△ABC的边AB(或延长线)上截取AD=A’B’,过点D作BC的平行线,交AC于点E,则∠ADE=∠B,∠AED=∠C,________(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。过点D作AC的平行线,交BC于点F,则__________(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。∴____________∵DE∥BC,D

5、F∥AC∴四边形DFCE是平行四边形。∴DE=CF∴____________∴____________而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C,∴____________∵∠A=∠A’,∠ADE=∠B’,AD=A’B’,∴△____≌△____∴△ABC∽△A’B’C’.通过证明,我们可以得到命题1是一个真命题,从而得出相似三角形判定定理1:两角分别相等的两个三角形相似。现在,我们已经有两种判定三角形相似的方法。第三环节:动手实践,推理证明下面我们可以类比前面的证明方法,来继续证明命题2,两边成比例且夹角相等的两个三角形相似。能自己试试吗

6、?鼓励学生积极思考,模仿前面的证明过程进行证明。可让学生板书过程,或老师在学生中寻找资源,通过投影修正过程中存在的问题。通过证明,学生可以得到相似三角形判定定理2:两边成比例且夹角相等的两个三角形相似。下面让每个学生独立完成三边成比例的两个三角形相似的证明。从而得到相似三角形判定定理:三边成比例的两个三角形相似。第四环节:方法选择,合理应用相似三角形的判定定理的选择:1.已知有一角相等,可选判定定理1和2;2.已知有两边对应成比例,可选判定定理2和3。第五环节:课堂小结,分层作业通过本节课的学习,您学会了哪些知识和方法?哪里还有困惑?作业:略学法指导

7、本节课为九年级第三章第五节内容,要求学生将已有的全等三角形的判定方法,相似三角形的定义,平行线分线段成比例等知识储备灵活运用,经历从特殊到一般,从猜想-实践-证明的过程,感受图形世界的丰富多彩,体会数学类比的思想方法,并学会选择最优方法进行问题的解决。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。