相似三角形判定定理的证明.doc

相似三角形判定定理的证明.doc

ID:49840845

大小:255.50 KB

页数:3页

时间:2020-03-04

相似三角形判定定理的证明.doc_第1页
相似三角形判定定理的证明.doc_第2页
相似三角形判定定理的证明.doc_第3页
资源描述:

《相似三角形判定定理的证明.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、相似三角形判定定理的证明【学习目标】1.了解相似三角形判定定理的证明过程,知道构造全等三角形是一种有效的证明方法.2.进一步掌握相似三角形的三个判定定理. 【学情分析】本课时的教学内容是相似三角形的判定定理证明。而在这之前,学生已对“平行线分线段成比例”这个基本事实熟练掌握,充分了解相似三角形的概念。因此为即将学习相似三角形判定定理的证明打下基础。可能会出现的问题有1、证明的思路和方法不清晰2、添加平行线的意图和作用不明确。【学习重点】掌握相似三角形的三个判定定理.【学习难点】通过已有的知识储备,相似三角形的定义以及构造三角形全等的方法完成证明过程.【教学过程】情景导入 生成问题我们已经

2、学习过相似三角形的判定定理有哪些?你能证明它们一定成立吗?答:相似三角形的判定定理有:(1)两角分别相等的两个三角形相似;(2)两边成比例且夹角相等的两个三角形相似;(3)三边成比例的两个三角形相似.自学互研 生成能力先阅读教材P99-101的内容,然后完成下面的填空:如图,已知△ABC和△A1B1C1,∠A=∠A1,=,求证:△ABC∽△A1B1C1.证明的主要思路是,在边AD上截取AD=A1B1,作DE∥BC,交AC于E,在△ABC中构造△ADE∽△ABC,再通过比例式得AE=A1C1,证△A1B1C1≌△ADE,从而得到△A1B1C1∽△ABC.1.证明:两角分别相等的两个三角形相

3、似,见教材P99-100页.2.证明:两边成比例且夹角相等的两个三角形相似,见教材P100-101页.3.证明:三边成比例的两个三角形相似,见教材P101-102页.解答下列各题:1.在△ABC与△A′B′C′中,有下列条件:①=;②=;③∠A=∠A′;④∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有( C )A.1组    B.2组    C.3组    D.4组2.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试证明:△ABF∽△EAD.证明:∵矩形ABCD中,AB∥CD,∠D=90°,∴∠BAF=∠AED.∵BF⊥AE,∴∠AFB=

4、90°.∴∠AFB=∠D,∴△ABF∽△EAD.典例讲解:已知,如图,D为△ABC内一点,连接BD、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,连接DE.求证:△DBE∽△ABC.分析:由已知条件∠ABD=∠CBE,∠DBC公用,所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,可再找一对角相等,或者找夹这个角的两边对应成比例.从已知条件中可看到△CBE∽△ABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决.证明:在△CBE和△ABD中,∠CBE=∠ABD,∠BCE=∠BAD,∴△CBE∽△ABD,∴=,即:=.在△

5、DBE和△ABC中,∠CBE=∠ABD,∴∠CBE+∠DBC=∠ABD+∠DBC,∴∠DBE=∠ABC且=,∴△DBE∽△ABC.对应练习:1.教材P102页习题4.9的第1题.答:相似.证明:△ABC为等边三角形.∴∠A=∠B=∠C=60°.又∵AE=BF=CD,∴AD=FC=EB,则△AED≌△CDF≌△BFE.∴ED=DF=EF.△EDF为等边三角形.∴△DEF∽△ABC.2.教材P102页习题4.9的第3题.证明:∵BE为∠DBC平分线,∴∠DBE=∠EBC.又∵AE=AB,∴∠ABE=∠AEB,∠ABE=∠ABD+∠DBE=∠ABD+∠EBC,∠AEB=∠EBC+∠C,∴∠AB

6、D=∠C,∠A=∠A,∴△ABD∽△ACB.则=.∵AB=AE,∴=,即AE2=AD·AC.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 相似三角形判定定理的证明知识模块二 相似三角形判定定理的应用检测反馈 达成目标1.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.证明:在△ABC中,AB=AC,BD=CD,∴A

7、D⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°.又∵∠B=∠B,∴△ABD∽△CBE.2.如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,求证:△ABD∽△CBA.证明:∵AB=2,BD=1,DC=3,∴AB2=4,BD·BC=1×(1+3)=4.∴AB2=BD·BC.即=.而∠ABD=∠CBA.∴△ABD∽△CBA.3.教材P102页习题4.9的第4题.解:设t秒后△PBQ与△ABC相似,①△PBQ∽△AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。