欢迎来到天天文库
浏览记录
ID:31752181
大小:144.00 KB
页数:3页
时间:2019-01-17
《导数在解决实际问题中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、导数在解决实际问题中的应用现实生活中,我们常用到“体积最大”、“用料最少”、“距离最短”、“利润最大”等最优问题,可以用导数来解决。例1、统计表明,某种型号的汽车在匀速行驶中每小时的耗油量为y(升),关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米.(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解:(I)当时,汽车从甲地到乙地行驶了小时,要耗油(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升
2、.(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数.当时,取到极小值因为在上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.例2、求抛物线上与点距离最近的点.解:设为抛物线上一点,则.与同时取到极值.令.由得是唯一的驻点.当或时,是的最小值点,此时.即抛物线上与点距离最近的点是(2,2).例3、烟囱向其周围地区散落烟尘而污染环境.已知落在地面某处的烟尘浓度与该处至烟囱距离的平方成反比,而与该烟囱喷出的烟尘量成正比,现
3、有两座烟囱相距20,其中一座烟囱喷出的烟尘量是另一座的8倍,试求出两座烟囱连线上的一点,使该点的烟尘浓度最小.解:不失一般性,设烟囱A的烟尘量为1,则烟囱B的烟尘量为8并设AC=,于是点C的烟尘浓度为,其中为比例系数.令,有,即.解得在(0,20)内惟一驻点.由于烟尘浓度的最小值客观上存在,并在(0,20)内取得,在惟一驻点处,浓度最小,即在AB间距A处处的烟尘浓度最小.例4、在甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水
4、站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?解:设∠BCD=Q,则BC=,CD=40cotθ,(0<θ<=,∴AC=50-40cotθ设总的水管费用为f(θ),依题意,有f(θ)=3a(50-40·cotθ)+5a·=150a+40a·∴f′(θ)=40a·令f′(θ)=0,得cosθ=根据问题的实际意义,当cosθ=时,函数取得最小值,此时sinθ=,∴cotθ=,∴AC=50-40cotθ=20(km),即供水站建在A、D之间距甲厂20km处,可使水管费用最省.
此文档下载收益归作者所有