欢迎来到天天文库
浏览记录
ID:31544012
大小:290.00 KB
页数:11页
时间:2019-01-13
《高考数学二轮复习 第1部分 重点强化专题 专题1 三角函数与平面向量 突破点1 三角函数问题学案 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、突破点1 三角函数问题[核心知识提炼]提炼1三角函数的图象问题(1)函数y=Asin(ωx+φ)解析式的确定:利用函数图象的最高点和最低点确定A,利用周期确定ω,利用图象的某一已知点坐标确定φ.(2)三角函数图象的两种常见变换提炼2三角函数奇偶性与对称性(1)y=Asin(ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+(k∈Z)求得,对称中心的横坐标可由ωx+φ=kπ,(k∈Z)解得.(2)y=Acos(ωx+φ),当φ=kπ+(k∈Z)时为奇函数;当φ=kπ(k∈Z
2、)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得,对称中心的横坐标可由ωx+φ=kπ+(k∈Z)解得.y=Atan(ωx+φ),当φ=kπ(k∈Z)时为奇函数;对称中心的横坐标可由ωx+φ=(k∈Z)解得,无对称轴.提炼3三角函数最值问题(1)y=asinx+bcosx+c型函数的最值:可将y转化为y=sin(x+φ)+c的形式,这样通过引入辅助角φ可将此类函数的最值问题转化为y=sin(x+φ)+c的最值问题,然后利用三角函数的图象和性质求解.(2)y=asin2x+bsinxcosx+ccos2x型函数的最值:可利用
3、降幂公式sin2x=,sinxcosx=,cos2x=,将y=asin2x+bsinxcosx非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。+ccos2x转化整理为y=Asin2x+Bcos2x+C,这样就可将其转化为(1)的类型来求最值.[高考真题回访]回访1 三角函数的图象问题1.(2016·全国卷Ⅱ)函数y=Asin(ωx+φ)的部分图象如图11所示,则( )图11A.y=2sin B.y=2sinC.y=2s
4、inD.y=2sinA [由图象知=-=,故T=π,因此ω==2.又图象的一个最高点坐标为,所以A=2,且2×+φ=2kπ+(k∈Z),故φ=2kπ-(k∈Z),结合选项可知y=2sin.故选A.]2.(2016·全国卷Ⅰ)将函数y=2sin的图象向右平移个周期后,所得图象对应的函数为( )A.y=2sin B.y=2sinC.y=2sinD.y=2sinD [函数y=2sin的周期为π,将函数y=2sin的图象向右平移非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护
5、,更是对**百联东方商厦有限公司工作的高度重视和支持。个周期即个单位长度,所得图象对应的函数为y=2sin=2sin,故选D.]回访2 三角函数的性质问题3.(2016·全国卷Ⅱ)函数f(x)=cos2x+6cos的最大值为( )A.4B.5C.6D.7B [∵f(x)=cos2x+6cos=cos2x+6sinx=1-2sin2x+6sinx=-22+,又sinx∈[-1,1],∴当sinx=1时,f(x)取得最大值5.故选B.]4.(2014·全国卷Ⅰ)在函数①y=cos
6、2x
7、,②y=
8、cosx
9、,③y=cos,④y=t
10、an中,最小正周期为π的所有函数为( )A.②④ B.①③④C.①②③ D.①③C [①y=cos
11、2x
12、=cos2x,最小正周期为π;②由图象知y=
13、cosx
14、的最小正周期为π;③y=cos的最小正周期T==π;④y=tan的最小正周期T=.]5.(2017·全国卷Ⅱ)函数f(x)=2cosx+sinx的最大值为________. [f(x)=2cosx+sinx=,设sinα=,cosα=,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限
15、公司工作的高度重视和支持。则f(x)=sin(x+α),∴函数f(x)=2cosx+sinx的最大值为.]回访3 三角恒等变换6.(2017·全国卷Ⅰ)已知α∈,tanα=2,则cos=________. [cos=cosαcos+sinαsin=(cosα+sinα).又由α∈,tanα=2,知sinα=,cosα=,∴cos=×=.]7.(2016·全国卷Ⅰ)已知θ是第四象限角,且sin=,则tan=________.- [由题意知sin=,θ是第四象限角,所以cos>0,所以cos==.tan=tan=-=-=-=-.]热
16、点题型1 三角函数的图象问题非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。题型分析:高考对该热点的考查方式主要体现在以下两方面:一是考查三角函数解析式的
此文档下载收益归作者所有