欢迎来到天天文库
浏览记录
ID:31543933
大小:1.48 MB
页数:31页
时间:2019-01-13
《高考数学二轮复习 特色专题训练 专题03 直击函数压轴题中零点问题 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题03直击函数压轴题中零点问题一、解答题1.已知函数.(1)讨论的单调性;(2)若在区间内有唯一的零点,证明:.【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)依题可知,若在区间内有唯一的零点,由(1)可知,且,于是:①,②由①②得,设g(x)=lnx−,(x∈(0,1)),求出函数的导数,根据函数的单调性证明即可.(2)依题可知,若在区间内有唯一的零点,由(1)可知,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人
2、的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。且.于是:①②由①②得,设,则,因此在上单调递减,又,根据零点存在定理,故.点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法.2.设函数f(x)=x2+bx-1(b∈R).(1)当b=1时证明:函数f(x)在区间内存在唯一零点;(2)若当x∈[1,2],不等式f(x)<1有解.求实数b的取值范围.【答案】(1)见解析;(2)【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f(x)
3、在区间单调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为对应函数最值问题:,再根据函数单调性确定函数最小值,即得实数b的取值范围.非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。(2)由题意可知x2+bx-1<1在区间[1,2]上有解,所以b<=-x在区间[1,2]上有解.令g(x)=-x,可得g(x)在区间[1,2]上递减,所以b4、.点睛:利用零点存在性定理不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。3.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知R且,,求证:方程在区间上有实数根.【答案】⑴见解析;⑵;⑶见解析.【解析】试题分析:(1)利用判别5、式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑶设,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;6、(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4.已知函数图象上一点处的切线方程为.(1)求的值;(2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底).【答案】(1)a=2,b=1.(2).【解析】试题分析:本题考查函数与方程,函数与导数的综合应用.(1)根据导数的几何意义,得出两个方程,然后求解.(2)先利用导数研究函数h(x)=f(x)+m=2lnx﹣x2+m的单调性,根据单调性与极值点确定关系然后求解.非常感谢上级领7、导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。(2)由(1)得f(x)=2lnx﹣x2,令h(x)=f(x)+m=2lnx﹣x2+m,则,令h'(x)=0,得x=1(x=﹣1舍去).故当x∈时,h'(x)>0,h(x)单调递增;当x∈(1,e]时,h'(x)<0,h(x)单调递减.∵方程h(x)=0在内有两个不等实根,∴,解得.∴实数的取值范围为.点睛:根据函数零点求参数取值或范围的方法(1)利用零点存在的判定定理构建不等式求解;非常感谢上级领导对8、我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。(2)分离参数后转化为函数
4、.点睛:利用零点存在性定理不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。3.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知R且,,求证:方程在区间上有实数根.【答案】⑴见解析;⑵;⑶见解析.【解析】试题分析:(1)利用判别
5、式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑶设,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;
6、(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4.已知函数图象上一点处的切线方程为.(1)求的值;(2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底).【答案】(1)a=2,b=1.(2).【解析】试题分析:本题考查函数与方程,函数与导数的综合应用.(1)根据导数的几何意义,得出两个方程,然后求解.(2)先利用导数研究函数h(x)=f(x)+m=2lnx﹣x2+m的单调性,根据单调性与极值点确定关系然后求解.非常感谢上级领
7、导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。(2)由(1)得f(x)=2lnx﹣x2,令h(x)=f(x)+m=2lnx﹣x2+m,则,令h'(x)=0,得x=1(x=﹣1舍去).故当x∈时,h'(x)>0,h(x)单调递增;当x∈(1,e]时,h'(x)<0,h(x)单调递减.∵方程h(x)=0在内有两个不等实根,∴,解得.∴实数的取值范围为.点睛:根据函数零点求参数取值或范围的方法(1)利用零点存在的判定定理构建不等式求解;非常感谢上级领导对
8、我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。(2)分离参数后转化为函数
此文档下载收益归作者所有