高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文

高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文

ID:30933110

大小:14.22 MB

页数:37页

时间:2019-01-05

高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第1页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第2页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第3页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第4页
高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文_第5页
资源描述:

《高考数学二轮复习上篇专题整合突破专题二三角函数与平面向量第2讲三角恒等变换与解三角形课件文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2讲 三角恒等变换与解三角形高考定位高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C级要求,二倍角的正弦、余弦及正切是B级要求,应用时要适当选择公式,灵活应用.试题类型可能是填空题,同时在解答题中也是必考题,经常与向量综合考查,构成中档题;(2)正弦定理和余弦定理以及解三角形问题是B级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.真题感悟考点整合1.三角函数公式2.正、余弦定理、三角形面积公

2、式探究提高1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示(1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.探究提高1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角

3、形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值.[微题型3]求解三角形中的实际问题【例2-3】(2016·无锡高三期末)在一个直角边长为10m的等腰直角三角形ABC的草地上,铺设一个也是等腰直角三角形PQR的花地,要求P,Q,R三点分别在△ABC的三

4、条边上,且要使△PQR的面积最小,现有两种设计方案:方案一:直角顶点Q在斜边AB上,R,P分别在直角边AC,BC上;方案二:直角顶点Q在直角边BC上,R,P分别在直角边AC,斜边AB上.请问应选用哪一种方案?并说明理由.方案一方案二解 应选方案二,理由如下:方案一:过点Q作QM⊥AC于点M,作QN⊥BC于点N,因为△PQR为等腰直角三角形,且QP=QR,∠MQR=∠NQP,∠RMQ=∠PNQ=90°,探究提高 应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如

5、坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.(1)证明由正弦定理得sinB+sinC=2sinAcosB,故2sinAcosB=sinB+sin(A+B)=sinB+sinAcosB+cosAsinB,于是sinB=sin(A-B).又A,B∈(0,π),故0<A-B<π,所以B=π-(A-B)或B=A-B,因此A=π(舍去)或A=2B,

6、所以A=2B.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式;(2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法.2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作

7、出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。