中考数学专题复习 利用三角形的角平分线构造全等三角形课件

中考数学专题复习 利用三角形的角平分线构造全等三角形课件

ID:30899392

大小:13.21 MB

页数:17页

时间:2019-01-04

中考数学专题复习 利用三角形的角平分线构造全等三角形课件_第1页
中考数学专题复习 利用三角形的角平分线构造全等三角形课件_第2页
中考数学专题复习 利用三角形的角平分线构造全等三角形课件_第3页
中考数学专题复习 利用三角形的角平分线构造全等三角形课件_第4页
中考数学专题复习 利用三角形的角平分线构造全等三角形课件_第5页
资源描述:

《中考数学专题复习 利用三角形的角平分线构造全等三角形课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、三角形常见辅助线的做法利用三角形的角平分线构造全等三角形一、倍长中线法遇到中线可以利用倍长中线,构造X全等,即把中线延长一倍,来构造全等三角形。如图,若AD为△ABC的中线,结论:ABCDE12延长AD到E,使DE=AD,连结BE(也可连结CE)。△ABD≌△ECD,∠1=∠E,∠B=∠2,EC=AB,CE∥AB。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。二、角平分线对称全等如图,在△ABC中,AD平分∠BAC。方法一:ABCDE必有结论:在AB上截取AE=AC,连结DE。△ADE≌△ADC。ED=CD,3*21∠AED=∠C,∠ADE=∠ADC。方法二:ABC

2、DF延长AC到F,使AF=AB,连结DF。必有结论:△ABD≌△AFD。BD=FD,3*21如图,在△ABC中,AD平分∠BAC。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。∠B=∠F,∠ADB=∠ADF。ABCDMN方法三:作DM⊥AB于M,DN⊥AC于N。必有结论:△AMD≌△AND。DM=DN,3*21如图,在△ABC中,AD平分∠BAC。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。AM=AN,∠ADM=∠AND。(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线

3、,AD=CD,求证:∠A+∠C=180°DABCE在BC上截取BE,使BE=AB,连结DE。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△ABD和△EBD中∵AB=EB(已知)∠1=∠2(已证)BD=BD(公共边)∴△ABD≌△EBD(S.A.S)1243∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)321*∴∠A=∠3(全等三角形的对应角相等)∵AD=CD(已知),AD=DE(已证)∴DE=DC(等量代换)∴∠4=∠C(等边对等角)AD=DE(全等三角形的对应边相等)证明:例1已知:如图,在四边形ABCD中,BD是∠A

4、BC的角平分线,AD=CD,求证:∠A+∠C=180°DABCF延长BA到F,使BF=BC,连结DF。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△BFD和△BCD中∵BF=BC(已知)∠1=∠2(已证)BD=BD(公共边)∴△BFD≌△BCD(S.A.S)1243∵∠F=∠C(已证)∴∠4=∠C(等量代换)321*∴∠F=∠C(全等三角形的对应角相等)∵AD=CD(已知),DF=DC(已证)∴DF=AD(等量代换)∴∠4=∠F(等边对等角)∵∠3+∠4=180°(平角定义)∴∠A+∠C=180°(等量代换)DF=DC(全等三角形的对应边相等)证明:例1已知:如

5、图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义)在△NBD和△MBD中∵∠N=∠DMB(已证)∠1=∠2(已证)BD=BD(公共边)∴△NBD≌△MBD(A.A.S)12∴∠4=∠C(全等三角形的对应角相等)N43321*∴ND=MD(全等三角形的对应边相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=

6、MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。12N43321*∵BD是∠ABC的角平分线(已知)DN⊥BA,DM⊥BC(已知)∴ND=MD(角平分线上的点到这个角的两边距离相等)∴∠4=∠C(全等三角形的对应角相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND

7、=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义)∠A=∠3(已证)∴∠A+∠C=180°(等量代换)练习1如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠BABCDE1221证明:在AB上截取AE,使AE=AC,连结DE。∵AD是∠BAC的角平分线(已知)∴∠1=∠2(角平分线定义)在△AED和△ACD中∵AE=AC(已知)∠1=∠2(已证)AD=AD(公共边)∴△AED≌△AC

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。