欢迎来到天天文库
浏览记录
ID:21182733
大小:1.40 MB
页数:13页
时间:2018-10-17
《利用角平分线构造全等三角形》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、利用三角形的角平分线构造全等三角形映山中学汪强如何利用三角形的中线来构造全等三角形?复习:可以利用倍长中线法,即把中线延长一倍,来构造全等三角形。如图,若AD为△ABC的中线,必有结论:ABCDE12延长AD到E,使DE=AD,连结BE(也可连结CE)。△ABD≌△ECD,∠1=∠E,∠B=∠2,EC=AB,CE∥AB。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。如何利用三角形的角平分线来构造全等三角形?问题:如图,在△ABC中,AD平分∠BAC。方法一:ABCDE必有结论:在AB上截取AE=AC,连结DE。△ADE≌△ADC。ED=CD,3*
2、21∠AED=∠C,∠ADE=∠ADC。方法二:ABCDF延长AC到F,使AF=AB,连结DF。必有结论:△ABD≌△AFD。BD=FD,如何利用三角形的角平分线来构造全等三角形?问题:3*21如图,在△ABC中,AD平分∠BAC。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。∠B=∠F,∠ADB=∠ADF。如何利用三角形的角平分线来构造全等三角形?问题:ABCDMN方法三:作DM⊥AB于M,DN⊥AC于N。必有结论:△AMD≌△AND。DM=DN,3*21如图,在△ABC中,AD平分∠BAC。可以利用角平分线所在直线作对称轴,翻折三角形来构造全
3、等三角形。AM=AN,∠ADM=∠AND。(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN)证明:例题已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCE在BC上截取BE,使BE=AB,连结DE。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△ABD和△EBD中∵AB=EB(已知)∠1=∠2(已证)BD=BD(公共边)∴△ABD≌△EBD(S.A.S)1243∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)321*∴∠A=∠3(全等三角形的
4、对应角相等)∵AD=CD(已知),AD=DE(已证)∴DE=DC(等量代换)∴∠4=∠C(等边对等角)AD=DE(全等三角形的对应边相等)证明:例题已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCF延长BA到F,使BF=BC,连结DF。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△BFD和△BCD中∵BF=BC(已知)∠1=∠2(已证)BD=BD(公共边)∴△BFD≌△BCD(S.A.S)1243∵∠F=∠C(已证)∴∠4=∠C(等量代换)321*∴∠F=∠C(全等三角形的对应角相等)∵
5、AD=CD(已知),DF=DC(已证)∴DF=AD(等量代换)∴∠4=∠F(等边对等角)∵∠3+∠4=180°(平角定义)∴∠A+∠C=180°(等量代换)DF=DC(全等三角形的对应边相等)证明:例题已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义)在△NBD和△MBD中∵∠N=∠DMB(已证)∠1=∠2(已证)BD=BD(公共
6、边)∴△NBD≌△MBD(A.A.S)12∴∠4=∠C(全等三角形的对应角相等)N43321*∴ND=MD(全等三角形的对应边相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。12N43321*
7、∵BD是∠ABC的角平分线(已知)DN⊥BA,DM⊥BC(已知)∴ND=MD(角平分线上的点到这个角的两边距离相等)∴∠4=∠C(全等三角形的对应角相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义)∠A=∠3(已证)∴∠A+∠C=180°(等量代换)练习如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠BABCDE1221证明:在AB上截取AE,使AE=AC,连结DE。∵AD是
8、∠BAC的角平分线(已知
此文档下载收益归作者所有