《任意角的三角函数》教案(1)

《任意角的三角函数》教案(1)

ID:29931697

大小:45.00 KB

页数:6页

时间:2018-12-25

《任意角的三角函数》教案(1)_第1页
《任意角的三角函数》教案(1)_第2页
《任意角的三角函数》教案(1)_第3页
《任意角的三角函数》教案(1)_第4页
《任意角的三角函数》教案(1)_第5页
资源描述:

《《任意角的三角函数》教案(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、任意角的三角函数教学目标:理解并掌握任意角三角函数的定义,理解并掌握各种三角函数在各象限内的符号,理解三角函数是以实数为自变量的函数,掌握正弦、余弦、正切函数的定义域;使学生通过任意角三角函数的定义,认识锐角三角函数是任意角三角函数的一种特例,加深特殊与一般关系的理解.教学重点:任意角三角函数的定义,正弦、余弦、正切函数的定义域.教学难点:正弦、余弦、正切函数的定义域.教学过程:Ⅰ.课题导入在初中我们学习了锐角三角函数,它是以锐角为自变量,边的比值为函数值的三角函数,前面我们对角的概念进行了扩充,并学习了弧度制,知道角

2、的集合与实数集是一一对应的,在这个基础上,今天我们来研究任意角的三角函数.Ⅱ.讲授新课对于锐角三角函数,我们是在直角三角形中定义的,今天,对于任意角的三角函数,我们利用平面直角坐标系来进行研究.设α是一个顶点在原点,始边在x轴正半轴上的任意角,α的终边上任意一点P的坐标是(x,y)(非顶点).它与原点的距离是r(r=>0)注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的正半轴重合.(2)OP是角α的终边,至于是转了几圈,按什么方向旋转的不清楚,也只有这样,才能说明角α是任意的.(3)角

3、α的终边只要不落在坐标轴上,就只能是象限角.(4)角α的终边不是不能落在坐标轴上,而是说落在坐标轴上的情况属于特殊情形,我们将在研究问题的过程中对其进行讨论.那么,(1)比值叫做α的正弦,记作sinα,即sinα=.(2)比值叫做α的余弦,记作cosα,即cosα=.(3)比值叫做α的正切,记作tanα,即tanα=.以上三种函数统称为三角函数.确定的角α,它的终边上任意一点P的坐标都是变量,它与原点的距离r也是变量,这三个变量的三个比值究竟是确定的还是变化的?根据相似三角形的知识,对于终边不在坐标轴上确定的角α,上述

4、三个比值都不会随P点在α的终边上的位置的改变而改变.当角α的终边在纵轴上时,即α=kπ+(k∈Z)时,终边上任意一点P的横坐标x都为0,所以tanα无意义,除此之外,对于确定的角α,上面的三个比值都是唯一确定的实数,这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.注意:(1)sinα是个整体符号,不能认为是“sin”与“α”的积.其余两个符号也是这样.(2)定义中只说怎样的比值叫做α的什么函数,并没有说α的终边在什么位置(终边在坐标轴上的除外),即函数的定义与α的终边位置无关.(3)比值只与角的大小有

5、关.我们已经给出了任意角三角函数的定义,请同学们考虑并比较一下,我们给出的任意角的三角函数的定义与锐角三角函数的定义,有什么联系与区别?正弦函数值是纵坐标比距离,余弦函数值是横坐标比距离,正切函数值是纵坐标比横坐标.由于角的集合与实数集R之间是一一对应的,所以三角函数可以看成是以实数为自变量的函数.我们知道,函数有三个要素,即定义域、值域、对应法则,下面我们就来研究正弦、余弦、正切函数的定义域,值域问题待后再作研究.对于正弦函数sinα=,因为r>0,所以恒有意义,即α取任意实数,恒有意义,也就是说sinα恒有意义,所

6、以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tanα=,因为x=0时,无意义,即tanα无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,恒有意义,即tanα恒有意义,所以正切函数的定义域是α≠kπ+(k∈Z).为了几何表示的需要,我们先来看单位圆的概念:以原点为圆心,单位长为半径的圆称为单位圆.单位长——如1cm、1dm、1m、1km等等,都是1个单位长,它们的单位虽不同,但长度都是1个单位长.即单位圆的半径是1(个单位长).在平面直角坐标系内,作单位圆,设任意角

7、α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),x轴的正半轴与单位圆相交于A(1,0),过P作x轴的垂线,垂足为M;过A作单位圆的切线,这条切线必平行于y轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.显然,线段OM的长度为|x|,线段MP的长度为|y|,它们都只能取非负值.当角α的终边不在坐标轴上时,我们可以把OM、MP都看作带有方向的线段。如果x>0,OM与x轴同向,规定此时OM具有正值x;如果x<0,OM与x轴正向相反(即反向),规定此时OM具有负值x,所以

8、不论哪一种情况,都有OM=x.如果y>0,把MP看作与y轴同向,规定此时MP具有正值y;如果y<0,把MP看作与y轴反向,规定此时MP具有负值y,所以不论哪一种情况,都有MP=y,由上面所述,OM、MP都是带有方向的线段,这种被看作带有方向的线段叫做有向线段(即规定了起点和终点),把它们的长度添上正号或负号,这样所得的数,叫做有向

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。