高中数学 第1章《解三角形》教案 北师大版必修5

高中数学 第1章《解三角形》教案 北师大版必修5

ID:29822674

大小:250.56 KB

页数:3页

时间:2018-12-24

高中数学 第1章《解三角形》教案 北师大版必修5_第1页
高中数学 第1章《解三角形》教案 北师大版必修5_第2页
高中数学 第1章《解三角形》教案 北师大版必修5_第3页
资源描述:

《高中数学 第1章《解三角形》教案 北师大版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、江苏省邳州市第二中学高二数学第1章《解三角形》教案【三维目标】:一、知识与技能1.进一步熟悉正、余弦定理内容,能够应用正、余弦定理进行边角关系的相互转化,判断三角形的形状,证明三角形中的三角恒等式;2.能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题.3.通过正、余弦定理在边角互换时所发挥的桥梁作用来反映事物之间的内在联系;通过三角恒等式的证明来反映事物外在形式可以相互转化而内在实质的不变性.二、过程与方法通过引导学生分析,解答几个典型例子,使学生学会综合运用正

2、、余弦定理,三角函数公式及三角形有关性质求解三角形问题。三、情感、态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。【教学重点与难点】:重点:正、余弦定理与三角形的有关性质的综合运用。难点:利用正、余弦定理进行边角互换时的转化方向(三角恒等式证明中结论与条件之间的内在联系的寻求)【学法与教学用具】:1.学法:通过一些典型的实例来拓展关于解三角形的各种题型及其解决方法。2.教学方法:启

3、发引导式(1)启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;(2)引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用3.教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1.复习公式:(本环节以学生自我归纳、自我总结为主)正弦定理:余弦定理:,2.正弦定理和余弦定理的常规应用。正弦定理及

4、其解决的三角形问题:(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角.余弦定理及其解决的三角形问题:(1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角.3.判断三角形的形状:判断锐角、直角、钝角4.思考:在中,已知,解三角形。从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。二、研探新知,质疑答辩,排难解惑,发展思维2.求三角形面积

5、例4半径为的圆外接于,且,(1)求角;(2)求面积的最大值。例5在中,若已知三边为连续正整数,最大角为钝角,(1)求最大角;(2)求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。四、巩固深化,反馈矫正1.已知中,,试判断的形状2.在中,已知,试判断该三角形的形状.解:由正弦定理及余弦定理,得,所以,整理得因为,所以.因此,为等腰三角形.3.在中,是方程的两个根,且,求(1)角的度数;(2)的长度;(3)的面积解:(1)cosC=cos[p-(A+B)]=-cos(A+B)=-∴C=120°(2

6、)由题设:∴AB2=AC2+BC2-2AC•BC•osC即AB=(3)S△ABC=五、归纳整理,整体认识熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断六、承上启下,留下悬念七、板书设计(略)八、课后记:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。