高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5

高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5

ID:29645474

大小:653.06 KB

页数:12页

时间:2018-12-21

高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5_第1页
高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5_第2页
高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5_第3页
高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5_第4页
高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5_第5页
资源描述:

《高中数学 2.1数列的概念与简单表示法教案(二)新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1数列的概念与简单表示法(一)教学过程一、知识讲解⒈数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式:

2、,或简记为,其中是数列的第n项结合上述例子,帮助学生理解数列及项的定义.②中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等。下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项↓↓↓↓↓序号这个数的第一项与这一项的序号可用一个公式:来表示其对应关系即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项结合上述其他

3、例子,练习找其对应关系⒋数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是,也可以是.⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个

4、数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、f(2)、f(3)、f(4)…,f(n),…6.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6

5、…是无穷数列2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。递减数列:从第2项起,每一项都不大于它的前一项的数列。常数数列:各项相等的数列。摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列二、范例讲解例1根据下面数列的通项公式,写出前5项:(1)分析:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项解:(1)(2)练习1根据下面数列的通项公式,写出前5项:⑴⑵解:⑴;⑵,,,,例2写出下面数列的一个通项公式,使它的前

6、4项分别是下列各数:(1)1,3,5,7;(2)(3)-,,-,.解:(1)项1=2×1-13=2×2-15=2×3-17=2×4-1↓↓↓↓序号1234即这个数列的前4项都是序号的2倍减去1,∴它的一个通项公式是:;(2)序号:1234↓↓↓↓项分母:2=1+13=2+14=3+15=4+1↓↓↓↓项分子:22-132-142-152-1即这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,∴它的一个通项公式是:;(3)序号‖‖‖‖这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且

7、奇数项为负,偶数项为正,所以它的一个通项公式是:练习2:根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,9,17,33,……;(2),,,,,……;(3)0,1,0,1,0,1,……;(4)1,3,3,5,5,7,7,9,9,……;(5)2,-6,12,-20,30,-42,…….解:(1)=2n+1;(2)=;(3)=;(4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,……,∴=n+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,……,∴

8、=(-1)n(n+1)例3数列中,.⑴是数列中的第几项?⑵为何值时,有最小值?并求最小值.解:⑴由,解得,是数列中的第项.⑵,或时,.练习3:数列中,,求数列的最大项和最小项.解:,又,,数列是递增数列数列的最小项为,没有最大项.三、课堂小结:本节课学习了以下内容:数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。四、巩固练习:1.数列1,0,1,0,1,……的一个通项公式是()A.an=B.an=C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。